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Let Hd be the space of systems of n homogeneous polynomials of de-
gree d = (d1, . . . , dn) in variables x0, . . . , xn , with complex coefficients.
The Kostlan norm ‖.‖k is defined in Hd as follows :

‖F‖k
2 =

∑
i

‖Fi‖k
2

where, for any single polynomial f of degree d in variables x0, . . . , xn,
we set :

‖f‖k
2 =

∑
|J |=d

|fJ |2(
d
J

)
Above, J are multi-indices, and :(

d
J

)
=

d!

J0!J1! . . . Jn!

We will give an easy proof of the Theorem :

Theorem 1 (Kostlan). Let F ∈ Hd. Then for any unitary automor-
phism U of Cn+1, ‖F‖k = ‖F ◦ U‖k.

This theorem was proven by Eric Kostlan in [2]. I do not have his
paper, but I took a look once, and (if I remember correctly) he gave a
diferent proof.

Unitary invariance of the Kostlan norm was extremely important to
the development of the complexity theory of solving systems of mul-
tivariate polynomials (see e.g. Mike Shub and Steve Smale [3]), since
‖.‖k is the natural norm in Hd.

We first prove the Lemma :

Lemma 1. Let f =
∑
fjx

i−jyj be a homogeneous polynomial of degree
i in x and y, with coefficients fj in a complex vector space K with
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Hermitian inner product 〈., .〉 . Let
〈
f, f̃

〉
k

denote :

〈
f, f̃

〉
k

=
∑

0≤j≤i

〈
fj, f̃j

〉
(
i
j

)

Then for any U ∈ U(2), ‖f‖k = 〈f, f〉k
1
2 = 〈f ◦ U, f ◦ U〉k

1
2 =

‖f ◦ U‖k .

The Lemma implies the Theorem for n = 2, by making K = C and
〈w, z〉 = wz̄. We first prove the Lemma. Then we will show that the
Lemma implies the Theorem in general.

Proof of the Lemma :
We first show that ‖.‖k is invariant under ordinary rotations of the

form :

Ut =

(
cos t − sin t
sin t cos t

)
Indeed, let ft = f ◦ Ut. It suffices to prove that for any f , we have :

Re
(〈
f, ḟ

〉
k

)
= 0

where ḟ means ∂ft
∂t

when t = 0 . Indeed, this will show that for any
t,

∂

∂t
‖ft‖k = 2 Re

(〈
f, ḟ

〉
k

)
= 0

We write :

ḟ(0) =
∑

0≤j<i
fj(i− j)xi−j−1yj+1 −

∑
0<j≤i

fjjx
i−j+1yj−1

Therefore,〈
f, ḟ

〉
k

=
∑

0≤j<i

〈fj+1, fj〉(i− j)(
i

j + 1

) −
∑

0<j≤i

〈fj−1, fj〉j(
i

j − 1

)
We substitute j by j + 1 in the first sum and get :〈

f, ḟ
〉

k
=

∑
0<j≤i

〈fj, fj−1〉(i− j + 1)(
i
j

) −
∑

0<j≤i

〈fj−1, fj〉j(
i

j − 1

)
〈
f, ḟ

〉
k

= 2iIm

 ∑
0<j≤i

j!i− j + 1!

i!
〈fj, fj−1〉


Therefore,

〈
f, ḟ

〉
k

is a pure imaginary, and ‖ft‖k does not depend

on t. This proves that ‖.‖k is rotation-invariant. A general unitary
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transformation can be represented a rotation times a complex in the
unit circle, times (eventually) permutation of variables. This proves
the Lemma.

Proof of the Theorem :
We first prove that ‖.‖k is invariant under (complex) Givens rota-

tions. A Givens rotation is a rotation in a plane generated by two com-
plex coordinates, and leaving all other coordinates invariant. Without
loss of generality, we can show that fact for rotations of variables x0

and x1 only. We write f as :

f(x) =
∑

0≤i≤d

∑
0≤j≤i

x0
i−jx1

jfij(x2, . . . , xn)

It is easy to see that :

〈
f, f̃

〉
k

=
∑

0≤i≤d

∑
0≤j≤i

〈
fij, f̃ij

〉
k

d!
d−i!i−j!j!

=
∑

0≤i≤d

∑
0≤j≤i

〈
fij, f̃ij

〉
k(

i
j

)(
d
i

)
According to the Lemma, for each i, the real part of the sum in j is

invariant by unitary transforms of x0 and x1. Therefore, Re(〈., .〉k) is
invariant by unitary transforms of x0 and x1. Hence, ‖.‖k is invariant
under (complex) Givens rotations. We can use the well-known :

Proposition 1. Every element of U(n+1) can be written as a product
of (complex) Givens rotations and (eventually) a variable permutation.

It follows from the proposition that ‖f‖k is U(n+ 1) -invariant, and
the invariance Theorem is proved.

The proof of this proposition uses the same argument than the
Givens QR factorization. Namely, let A be a unitary transform. By
applying a variable permutation, we can assume that detA = +1. Now
we reproduce the classical argument (See Golub and Van Loan [1],
Algorithm 5.2.2 page 214 or Watkins [4], Theorem 3.2.9, page 143) :

We assumed that A(0) = A ∈ SU(n+ 1) . There is a Givens rotation
G(0) changing only coordinates n and n+1 such that the matrix A(1) =
G(0)A(0) verifies :

A(1)
n+1,1 = 0

Namely, we set :

c =
Ā(0)

n+1,1√
|A(0)

n,1|2 + |A(0)
n+1,1|2



4 GREGORIO MALAJOVICH

s =
Ā(0)

n,1√
|A(0)

n,1|2 + |A(0)
n+1,1|2

G(0) =

 I
c s
−s c


By the same procedure, we construct

G(1) =


I

c s
−s c

1


such that A(1) = G(1)A(0) verifies :

A(1)
n,1 = A(1)

n+1,1 = 0

and so on. We will then construct A(n) =
∏0
i=n−1 G

(i) A(0) such that

A(n)
i,1 = 0 for i > 1 and A(n)

1,1 = 1 . We can then construct a Givens
rotation G(n) ,

G(n) =

 I
c s
−s c


such that A(n+1) = G(n)A(n) verifies A(n+1)

n+1,2 = 0 , A(n+1)
i,1 = 0 for

i > 1 and A(n+1)
1,1 = 1 . By the same procedure as above, we obtain

A(2n−1) with all A(2n−1)
i,j = 0 for i > j and j = 1, 2 , and A(2n−1)

i,i = 1
for i = 1, 2.

Continuing the same procedure, we finally get a matrix

A(n(n−1)
2 ) =

0∏
i=

n(n−1)
2
−1

G(i) A(0)

that is upper triangular and has only 1’s in the diagonal. Since

A(n(n−1)
2 ) is also a rotation (an element of SU(n + 1) ), it follows that

it is precisely the identity of Cn+1 .
Therefore, we can write :

A(0) =

n(n−1)
2
−1∏

i=0

G(i)−1

and A is a product of Givens rotations. This concludes the proof of
the Proposition.
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