UNITARY INVARIANCE OF THE KOSTLAN NORM
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Let Hy be the space of systems of n homogeneous polynomials of de-
gree d = (dy,...,d,) in variables xo, ..., z, , with complex coefficients.
The Kostlan norm ||.||, is defined in Hy as follows :

12 = D IE L

where, for any single polynomial f of degree d in variables xy, . . ., x,,
we set :
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Above, J are multi-indices, and :
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We will give an easy proof of the Theorem :

Theorem 1 (Kostlan). Let F' € Hy. Then for any unitary automor-
phism U of C*™ ||F||, = |[FoU|l,.

This theorem was proven by Eric Kostlan in [2]. T do not have his
paper, but I took a look once, and (if I remember correctly) he gave a
diferent proof.

Unitary invariance of the Kostlan norm was extremely important to
the development of the complexity theory of solving systems of mul-
tivariate polynomials (see e.g. Mike Shub and Steve Smale [3]), since
|||l is the natural norm in H,.

We first prove the Lemma :

Lemma 1. Let f =3 f;2"77y? be a homogeneous polynomial of degree
v in x and y, with coefficients f; in a complex vector space K with
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Hermitian inner product (.,.) . Let <f, f> denote :

Unh)
D)= 27,
()
Then for any U € U(2), |[fll, = (f, )2 :(foU,foU)k%:
[foUll -

The Lemma implies the Theorem for n = 2, by making K = C and
(w, z) = wz. We first prove the Lemma. Then we will show that the
Lemma implies the Theorem in general.

Proof of the Lemma :
We first show that ||.||, is invariant under ordinary rotations of the

form :
cost —sint
U = (sint cost )

Indeed, let f; = f o U;. It suffices to prove that for any f, we have :

Re ((f.1),) =

where f means 22t when t = 0 . Indeed, this will show that for any

ot
t
o .
o7l =2Re ((£.F),) =
We Write :
Zf]z_jzjlj+1 Zf]ng—i—l
0<j<1i 0<5<i
Therefore,

(F5) = ¥ {(firn, i) =3) 3 {fj-1, fi)J

0<j<i i 0<j<i v
j+1 Jg—1

We substitute j by j 4+ 1 in the first sum and get :

<f,f> _ Z (fis fi-)(i—j+1) _ Z (fi-1, f3)J

k 0<j<i Z 0<;j<i . 1
J j—1

<f7 f>k = 2ilm ( Z ngvfj 1>)

0<j<i

Therefore, < fif >k is a pure imaginary, and ||f;||, does not depend
on t. This proves that |[.||, is rotation-invariant. A general unitary
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transformation can be represented a rotation times a complex in the
unit circle, times (eventually) permutation of variables. This proves
the Lemma.

Proof of the Theorem :

We first prove that ||.||, is invariant under (complex) Givens rota-
tions. A Givens rotation is a rotation in a plane generated by two com-
plex coordinates, and leaving all other coordinates invariant. Without
loss of generality, we can show that fact for rotations of variables xg
and z; only. We write f as :

f(ZL‘) = Z Z Ioi_jl‘ljfij(l‘g, c. ,ZEn)

0<i<d 0<j<i

It is easy to see that :

G-y oy ek y v (%EZ)

0<i<d 0<j<i d—ili—jlj! 0<i<d 0<j<i [

J

According to the Lemma, for each i, the real part of the sum in j is

invariant by unitary transforms of z, and z7. Therefore, Re((.,.),) is

invariant by unitary transforms of zy and z;. Hence, ||.||, is invariant
under (complex) Givens rotations. We can use the well-known :

?

Proposition 1. Every element of U(n+1) can be written as a product
of (complex) Givens rotations and (eventually) a variable permutation.

It follows from the proposition that || f||, is U(n + 1) -invariant, and
the invariance Theorem is proved.

The proof of this proposition uses the same argument than the
Givens QR factorization. Namely, let A be a unitary transform. By
applying a variable permutation, we can assume that detA = +1. Now
we reproduce the classical argument (See Golub and Van Loan [1],
Algorithm 5.2.2 page 214 or Watkins [4], Theorem 3.2.9, page 143) :

We assumed that A(®) = A € SU(n+1) . There is a Givens rotation
G changing only coordinates n and n+ 1 such that the matrix A =
GO A verifies :

A(l)nJrl,l =0

Namely, we set :

Azo)n+1,1

\/|A(0)n,1|2 + |A©, )

CcC =
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A(O)nl
s = ’
\/|A(0)n,1|2 + |A©, 4]
I
GO = c s
-5 c

By the same procedure, we construct

1
c s
-5 c

G —

such that A® = GM AO) verifies :
AW =AW, =0

and so on. We will then construct A™ =T | G® A©® such that
A(")i,l =0fori>1and A(”)Ll =1 . We can then construct a Givens
rotation G™ |
I
G = c S
—s ¢

such that A1) = G A verifies A(n+1)n+1,2 =0, A("H)i,l = 0 for
7> 1 and A(”“)Ll = 1. By the same procedure as above, we obtain
A=) with all A=Y, =0fori>jandj=1,2,and A%V, =1
fori=1,2.

Continuing the same procedure, we finally get a matrix

n(n—1) )

0
AP = T @ A®

i= n(nzfl) 1

that is upper triangular and has only 1’s in the diagonal. Since
n(n—1)
A7) i also a rotation (an element of SU(n + 1) ), it follows that

it is precisely the identity of C**! .
Therefore, we can write :

n(n—1) 1

A9 = T ¢
=0

and A is a product of Givens rotations. This concludes the proof of
the Proposition.
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