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Abstract

Kronecker’s theorem states that if 1, θ1, . . . , θn are real algebraic
numbers, linearly independent over Q, and if α ∈ Rn, then for any ε > 0
there are q ∈ Z and p ∈ Zn such that |qθi − αi − pi| < ε .

Here, a bound on q is given in terms of the dimension n, of the precision
ε, of the degree of the θi’s and of their height.

A possible connection to the square-root sum problem is discussed.

1 Introduction

In most of the literature, Kronecker’s theorem on simultaneous diophantine
approximation is stated in an ineffective way. However, there are some effec-
tive versions, that require additional hypotheses on the θi’s. See for instance
Rieger [10], Theorem 1 or Larcher and Niederreiter [8] section 3. Other avail-
able statements (like in Baker Brüdern and Harman [2]) do not seem to imply
a bound on q.

Here, an elementary constructive proof of Kronecker’s theorem will be given.
Using estimates on the height of algebraic numbers, it will be possible to obtain
effective bounds on q. For more on heights, see Section 2. The main result of
this paper is:

Main Theorem 1. * There is a function K(d, n) ∈ dO(n2) such that if θ1, . . . ,
θn are real algebraic numbers and

1. The numbers 1, θ1, . . . , θn are linearly independent over Q
∗Preprint, City University of Hong Kong, October 5, 2001.
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2. Each θi is algebraic of degree ≤ d over Q

3. The height H(θi) of each θi is smaller than some H ∈ N

then, for any α ∈ Rn, for any ε > 0, there are q ∈ Z, p ∈ Zn such that

|qθi − αi − pi| < ε , i = 1, . . . , n (1)

|q| ≤
(
ε−1H

)K(d,n)
(2)

If α = 0, this follows from Dirichlet’s theorem (in fact, the bound will be
|q| ≤ ε−n). Removing conclusion (2), this is Kronecker’s theorem (See Section
2).

An immediate consequence of the main theorem is the

Corollary 1. Under conditions 1, 2 and 3 of the main theorem, for any ε > 0,
there are q ∈ Z and p ∈ Zn such that:

0 < qθi − p < ε

|q| ≤
(
2ε−1H

)K(d,n)

Indeed, set αi = ε/2 and apply the main theorem to obtain an ε/2 approxi-
mation of α.

The investigation of effective bounds for Kronecker’s theorem and for Corol-
lary 1 was motivated by square-root sum decision problem (SQRTS), arising
from computational geometry: given n,m, a1 . . . , am, b1, . . . , bn ∈ N, decide if∑√

ai >
∑√

bi . Another formulation: given two paths joining lattice points
in the plane, decide which is shorter. This problem is not known to be in NP.
See Section 5 for further comments.

The idea of using ‘gap theorems’ to investigate the square-root sum problem
was suggested by Steve Smale. The following people make important suggestions
and comments: Manuel Blum, Wellington de Melo, Mike Shub, Steve Smale,
Bob Williams.

This paper was written as I was visiting the City University of Hong Kong,
which I thank for its generous support.

2 Related Results, and a Conjecture

The following are the classical results related to the main Theorem of this paper:

Theorem 1 ((Dirichlet)). Let θ ∈ Rn and let ε > 0. Then there are q ∈ N,
p ∈ Zn such that |qθi − pi| < ε for all i. Furthermore, 1 ≤ q < ε−n.
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See Schmidt [11] Theorem 1A page 27, or Baker [1], for a proof.

Theorem 2 ((Kronecker)). Let 1, θ1, . . . , θn be real algebraic numbers, lin-
early independent over Q. Then for any α ∈ Rn, there are q ∈ N and p ∈ Zn
such that |qθi − αi − pi| < ε, for all i.

In fact, the statement is more general (see Siegel [13] page 63), but no bound
for q seems to be known. The proof is non-constructive.

The bound for K(d, n) in the main theorem seems to be extremely pes-
simistic. Instead, I would conjecture that

Conjecture 1. There is K ′(d, n) = K ′(n) ∈ nO(1) such that the main theorem
is valid, for θi = ±√ai, ai ∈ N, and K replaced by K ′.

Remark that this conjecture is false if one drops the assumption that the
θi’s are algebraic, or if one does not bound the height of θ. In that case, even if
n = 1, one could have an arbitrarily small θ, so an arbitrarily large q would be
necessary to approximate α = 1/2.

Estimates on heights of algebraic number will be needed in the proof of the
main theorem. The height is a function H : Q̄ → N. The properties of heights
that we will use are listed below. Here, a, b ∈ Q̄∗, and p ∈ Z∗ .

1. H(a)−deg
Q
(a) ≤ |a| ≤ H(a)deg

Q
(a)

2. H(0) = H(1) = 1

3. H(p) = |p|

4. H(ab) ≤ H(a)H(b)

5. H(a−1) = H(−a) = H(a)

6. H(a+ b) ≤ 2H(a)H(b)

For the precise definition, and proof of the properties above, see Blum,
Cucker, Shub and Smale [4], Silverman [14] or Schmidt [12].

3 Translations of the Torus, Covering Number
and Useful Lemmas

The n-dimensional torus Tn is the quotient Rn/Zn . A point x ∈ Rn will
represent the equivalence class x+ Zn in Tn .

Let θ ∈ Rn . The vector θ induces a mapping fθ : x 7→ x+ θ mod Zn in the
torus Tn . This mapping can be interpreted as a dynamical system in Tn.

For more applications of dynamical systems or ergodic theory and for more
about mappings of the torus, see Furstenberg [6], or Baladi, Rockmore, Ton-
gring and Tresser [3].
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Dirichlet’s theorem (Theorem 1) says that, whatever θ is, some iterate of
the origin 0 will come back to an ε-neighborhood of it, in time bounded by ε−n.
It may also happen that θ is so small, that the first iterate will still be in an ε
neighborhood of the origin.

In fact, any point of the torus will return to any neighborhood of itself.
Points with that property are said to be recurrent (under Fθ), and in this case
all points are recurrent. Also, we have an effective bound for the return time.

Now, if an arbitrary point α ∈ Tn is given, will some iterate of 0 come within
an ε-neighborhood of α ? This is false in general (e.g. θ =

(√
2, 1−

√
2
)

. But
this is true under the condition of Kronecker’s theorem (Theorem 2).

In that case, the orbit of 0 is dense, and the dynamical system fθ is ergodic.
This means that :

1. There is a probability measure µ invariant by f−1
θ

2. Any fθ-invariant set has measure 1 or 0.

Ergodic systems behave at ‘random’, in the following sense: the average of
any measurable function on almost any orbit of fθ converges to the average of
that function in Tn (This is the ergodic theorem). However, little is known
about the rate of convergence.

If Conjecture 1 is false, then even for simple examples like θi =
√
ai the rate

of convergence may be extremely slow.

Let denote by B(ε, x) the ball of radius ε around x ∈ Tn, i.e. the set:

B(ε, x) = {y ∈ Tn s.t. |xi − yi − pi| < ε for all i and for some pi ∈ Z}

The orbit {qθ mod Zn} of 0 generates a covering {B(ε, qθ)}q∈N of the torus
Tn . Since Tn is compact, there is a finite subcovering that can be chosen in
the form:

{B(ε, qθ)}q=1,2,...,N (3)

The smallest N such that (3) defines a covering of the torus will be called
the covering number of θ and ε, and denoted N(ε, θ). The conclusions of the
main theorem (equations (1) and (2)) may now be restated as:

N(ε, θ) ≤
(
(ε−1H

)K(d,n)

Some useful properties of the covering number follow:

Lemma 1.

1. For all q ∈ Z, N(ε, θ) ≤ qN(ε, qθ)

2. For all p ∈ Zn, N(ε, θ + p) = N(ε, θ)
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of Lemma 1. Item 2 is trivial. In order to prove item 1, consider the orbit
{rθ}1≤r≤qN(ε,qθ) of 0 by fθ . It contains the orbit {s(qθ)}1≤s≤N(ε,qθ) of 0 under
fqθ. Since this last orbit is within distance ε of any prescribed point, the former
one also is.

Also, on may embed the translation fθ into a flow ϕtθ of Tn, defined by:

ϕθ : R× Tn → Tn

t, x 7→ ϕtθ(x) = x+ tθ mod Zn

We may define the covering number for ϕθ in an analogous way as the
covering number for a discrete transformation. We define ν(ε, θ) as the infimum
of all s ∈ R+ such that: ⋃

t∈[0,s]

B(ε, ϕtθ(0)) ⊇ Tn

We will use the following fact in the sequel:

Lemma 2. N(ε, θ) ≤ ν(ε−max θi, θ)

of Lemma 2. Let α ∈ Tn. There is t ≤ ν(ε −max |θi|, θ) such that tθ ∈ B̄(ε −
max |θi, α). Let s be the largest integer ≤ t. Then ϕsθ(0) − ϕtθ(0) = (t − s)θ
mod Zn, and max(t − s)|θi| < max |θi|. Therefore, by triangular inequality,
ϕsθ(0) ∈ B(ε, α) .

4 Proof of the Main Theorem

Assume, as in the hypothesis of the main theorem, that 1, θ1, . . . , θn are real
algebraic numbers, linearly independent over Q. Let H = maxH(θi), and let d
bound the degree of each θi over Q. Let D be the degree of Q[θ1, . . . , θn] over
Q. Then D ≤ dn.

Given ε, we have to bound the covering number N(ε, θ) . We will proceed
by induction on the dimension n. We will need the

Lemma 3. Under the conditions above, there are θ̂1, . . . , θ̂n−1 ∈ Q[θ1, . . . , θn],
such that:

1. 1, θ̂1, . . . , θ̂n−1 are linearly independent over Q.

2. H(θ̂i) ≤
(
ε−1H(θ)

)4 max(n+1,D)

3. N(ε, θ) ≤
(
ε−1H(θ)

)4Dmax(n+1,D)
N( ε2 , θ̂)
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of Lemma 3. According to Dirichlet’s theorem (Theorem 1), there are q ∈ N,
p ∈ Zn such that:

|qθi − pi| <
ε

2
, for i = 1, . . . , n

with 1 ≤ |q| <
(

2
ε

)n. In other words, the qth iteration of θ defines a ‘small’
translation of the torus.

We may also bound the ‘rotation numbers’ pi of qθ as follows:

|pi| ≤ |q|(|θi|+ 1) ≤ 2|q|H(θi)deg
Q
θi

We also obtain the following lower bound, to be used later:∣∣∣∣θi − pi
q

∣∣∣∣ ≥ 1

H
(
θi − pi

q

)deg
Q
θi
≥ 1(

4
(

2
ε

)2n
H(θi)1+deg

Q
θi
)deg

Q
θi

(4)

Remark 1. The bound above can be mad much sharper if one knows how to
bound the constant c appearing in Liouville’s theorem |qθi − pi| > c

q
deg

Q
θi

.

Unfortunately, we may only assume here a bound on H(θ).

The covering number of θ may be bounded as follows:

N(ε, θ) ≤ qN(ε, qθ)
≤ qN(ε, qθ − p)

≤ qν(
ε

2
, qθ − p)

where the first two inequalities follow from Lemma 1, and the last one from
Lemma 2, using the fact that |qθi − pi| < ε/2 .

At this point, we bounded the covering number of the translation fθ in terms
of the covering number of the flow ϕtθ in the torus. Since θn is not a rational,
this flow is transversal to the plane xn = αn, where αn is a constant, as in the
main theorem.

We should look now at the first return map, also known as Poincaré trans-
form, of the flow ϕtθ in the plane xn = αn. The first return map associates, to
any point X = (x1, . . . , xn−1, αn) of the plane xn = αn, the next point in the
orbit of X that belongs to xn = αn. This point is given explicitly by:

x1

...
xn−1

αn

+


qθ1−p1
qθn−pn

...
qθn−1−pn−1
qθn−pn
αn


Therefore, we set θ̂1 = qθ1−p1

qθn−pn , . . . , θ̂n−1 = qθn−1−pn−1
qθn−pn .
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In order to arrive to a distance ≤ ε/2 of a point α = (α1, . . . , αn) ∈ Tn,
starting from the origin, one should follow the flow ϕtθ until arrival to the plane
αn = 0. Then, one performs as many iterations of the first return map as
necessary. This number is finite (since 1, θ̂1, . . . , θ̂n−1) are linearly independent
over Q) and bounded above by N(ε/2, θ̂).

Each iteration of the first return map takes time 1
|qθn−pn| in the flow. Also,

the plane xn = αn may be reached for the first time in time < 1
|qθn−pn| .

Hence,

ν(
ε

2
, qθ − p) ≤ 1

|qθn − pn|

(
1 +N(

ε

2
, θ̂)
)

Therefore,

N(
ε

2
, θ) ≤ 1

|θn − pn/qn|

(
1 +N(

ε

2
, θ̂)
)

Using (4), one obtains:

N(
ε

2
, θ) ≤ 2(2n+2)deg

Q
θnε−2ndeg

Q
θnH(θn)(1+deg

Q
θn)deg

Q
θn
(

1 +N(
ε

2
, θ̂)
)

Hence, since H(θn), ε−1 ≥ 2, we can replace the right-hand side by a coarser
estimate:

N(
ε

2
, θ) ≤

(
ε−1H(θ)

)Dmax(4(n+1),D+1)
N(

ε

2
, θ̂) (5)

Also,

H(θ̂i) ≤ H(qθi − pi)H(qθn − pn) ≤ 4|q|2H(θi)H(θn)|pi||pn|

This can be estimated by:

H(θ̂i) ≤ 22n+4ε−2nH(θi)1+deg
Q
θiH(θn)1+deg

Q
θn ≤

(
ε−1H(θ)

)max(4(n+1),D+1)

(6)

We may bound (5) and (6) by (ε−1H)4Dmax(n+1,D) and (ε−1H)4 max(n+1,D),
respectively, as in the statement of the lemma.

We will prove now a more general version of the main theorem, where K(d, n)
is replaced by a power of D = deg

Q
Q[θ1, . . . , θn].

Induction Hypothesis 1. * Let θ1, . . . , θn be algebraic numbers, so that:

1. 1, θ1, . . . , θn are linearly independent over Q

2. deg
Q
Q[θ1, . . . , θn] ≤ D
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3. The height H(θi) of each θi is smaller than H ∈ N

Then N(ε, θ) ≤
(
ε−1H

)(4 max(D,n+1))2n

For n = 1, N(ε, θ) ≤ 1
|θ−p/q| as above. Furthermore, we may bound the

right-hand side by 4(ε/2)−2DHD(1+D) ≤ (H/ε)4D2
.

Assume the induction hypothesis true at rank n−1. According to Lemma 3,

N(ε, θ) ≤
(
ε−1H

)4Dmax(D,n+1)
N(ε/2, θ̂)

with

H(θ̂) ≤
(
ε−1H

)4 max(D,n+1)

Hence, by induction,

N(ε, θ) ≤
(
ε−1H

)4Dmax(D,n+1)
((
ε−1H

)4 max(D,n+1) 2
ε

)(4 max(n+1,D)2n−2

(7)

≤
(
ε−1H

)(4 max(n+1,D)2n

(8)

Recall that, under the hypotheses of the Main Theorem, D ≤ dn. Also,
n+ 1 ≤ dn for all n ≥ 1, since we require d ≥ 2. Hence 4 max(n+ 1, D) ≤ 4dn,
and:

(4dn)2n = 42nd2n2
≤ d2n2+4n ≤ d3n2

Therefore, we set K(d, n) = d3n2 ∈ dO(n2), and the main theorem is proved.

5 Connections with the square-root sum prob-
lem

The square-root sum decision problem is defined as:

Problem 1. (SQRTS) Givenm,n, a1, . . . , am, b1, . . . , bm ∈ N, decide if
∑√

ai >∑√
bi

A different formulation of this problem (decide
∑√

ai > c ,c ∈ N) appeared
in Garey, Graham and Johnson [7] in connection with the traveling salesman
problem in the plane:

Given a set of lattice (integer) points in the plane, decide if there is a path of
length < c covering all the points. This problem was proven to be NP-complete
for the ‖.‖1 metric.
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However, the traveling salesman problem in the plane with the usual euclid-
ian metric was only shown to be NP-hard, due to the difficulty to check if a
given path has length < c.

This last problem was studied by Tiwari [15], in a more particular setting
(the ai’s were represented in the form c

√
p1 . . . pk, c ∈ Z, pi primes. He con-

cluded that this problem could be solved in polynomial time by a RAM machine.
(i.e., counting only the number of algebraic operations). It is not known if there
is a polynomial time algorithm for this problem, in the bit-complexity model.

As Tiwari’s problem, SQRTS can be solved in polynomial time over the reals
or over Z (RAM machines, without counting bit operations). The strategy is to
approximate each

√
ai and

√
bi up to the necessary precision δ, using log− log δ

Newton iterations. Moreover, it can be proved that
∑√

ai −
∑√

bi is either 0,
or:

|
∑√

ai −
∑√

bi| > max(ai, bi)−2O(m+n)

Indeed, write x =
∑√

ai −
∑√

bi as a solution of:

θ2
1 − a1 = 0

...
θ2
m − am = 0
θ2
m+1 + b1 = 0

...
θ2
m+n + bn = 0
θ1 + · · ·+ θm+n − x = 0

and then apply Canny’s gap theorem [5] or Pardo and Krick’s Corollary 7 in [9].
Therefore, O(m + n) Newton iteration will approximate ai and bi up to

precision δ ≤ 1
2(m+n) max(ai, bi)−2O(m+n)

. Thus, it is possible to compute x in
time O(m+ n) with precision enough to decide SQRTS.

When bit-complexity (Turing complexity, or complexity over F2) is con-
cerned, the gap bound above is not satisfactory any more. Indeed, log− log δ
iterations can produce numbers with − log δ bits, making the above algorithm
exponential time.

Proposition 1. Conjecture 1 implies that SQRTS belongs to P.

of Proposition 1. Set θ1 =
√
a1, . . . , θm =

√
am, θm+1 = −

√
b1, θm+n = −

√
bn.

Now, Corollary 1 implies that for all ε > 0, there are q ∈ N, p ∈ Zm+n such
that 0 < θi − pi/q < ε/q, with 1 ≤ q < (2ε−1H)(m+n)O(1)

.
Set ε = 1

2(m+n) . Then q < ((4(m+ n)H)(m+n)O(1)
. We may now distinguish

two cases.
Case 1: Assume that

∑ pi
q 6= 0. Then |

∑ pi
q | ≥

1
q , and:

|
∑

θi| ≥ |
∑ pi

q
| − |

∑
θi −

pi
q
| ≥ 1

q
− 1

2q
≥ 1

2q
∈ H−(m+n)O(1)
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Case 2:
∑ pi

q = 0, so
∑
θi =

∑
θi − pi

q . However, according to Liou-
ville’s theorem, |θi − pi

q | >
c
q2 , where the constant c may be chosen equal to

1
2(max(ai,bi)+1) . Therefore,∑

θi >
nc

q2
∈ H−(m+n)O(1)

Therefore, we conclude that O((m+n)O(1) logH) steps of Newton iteration
suffice to decide SQRTS.
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