
On the Complexity of Path-Following Newton Algorithms

for Solving Systems of Polynomial Equations

with Integer Coefficients.

by

Gregorio Malajovich-Muñoz

B.S. (Universidade Federal do Rio de Janeiro) 1989

M.S. (Universidade Federal do Rio de Janeiro) 1990

A thesis submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Mathematics

in the

GRADUATE DIVISION

of the

UNIVERSITY of CALIFORNIA at BERKELEY

Committee in charge:

Professor Steve Smale, Chair

Professor Hendrik W. Lenstra

Professor John Canny

1993

2

The thesis of Gregorio Malajovich Muñoz is approved :

Chair Date

Date

Date

University of California, Berkeley

1993

On the Complexity of Path-Following Newton Algorithms

for Solving Systems of Polynomial Equations

with Integer Coefficients.

c© copyright 1993

by

Gregorio Malajovich-Muñoz.

Contents

Chapter 1. Introduction 1

1. Systems of polynomials with Integer coefficients 1

2. Global complexity of polynomial-solving 2

3. The geometry of polynomial-solving 3

4. Outline of this Thesis. 4

5. Acknowledgements 5

Chapter 2. On generalized Newton algorithms :

Quadratic Convergence, Path-following

and error analysis 7

1. Introduction 7

2. Estimates on β 14

3. Estimates on γ 16

4. Estimates on α 17

5. Estimates on κ 20

6. Proof of the Robustness results 22

Chapter 3. Construction of the Approximate Newton Operator 26

1. Introduction 26

2. Basic definitions 29

3. Algorithms 32

4. Sketch of the proof of Theorems 11 and 12 34

5. Forward error analysis of Phase 1 35

6. Some backward error analysis identities 35

7. Backward error analysis of Phase 2 38

8. Conditioning of M 39

9. First order analysis 41

10. Construction of the finite precision machine 42

11. Polynomial time analysis 44

iii

iv

Chapter 4. Gap theory and estimate of the condition number 47

1. Introduction 47

2. The Macaulay resultant 50

3. Gap Theorems 55

4. Worst possible conditioning 60

5. Diophantine decision problem 65

6. Proof of theorem 15 67

7. Separation of roots 68

Chapter 5. Global complexity of solving systems of polynomials 70

1. Introduction 70

2. How to obtain starting points. 70

3. How to bound µ 71

4. More estimates on µ 74

5. How to bound η 75

6. How to certify an approximate solution. 76

7. How to solve a generic system. 77

8. Computational matters. 79

Appendix A. Glossary of notations 81

Appendix B. The Author’s Address and e-mail 83

Appendix. Bibliography 84

CHAPTER 1

Introduction

Complexity of solving systems of polynomial equations with integer

coefficients can be bounded for a generic class of systems.

1. Systems of polynomials with Integer coefficients

Let Hd be the space of all systems of n homogeneous polynomial equations

with degree d = (d1, . . . , dn) in variables (x0, . . . , xn) with complex coefficients.

The space Hd is a complex vector space, with coordinates given by the coefficients

of each polynomial.

A zero of a system f ∈ Hd is a point ζ ∈ Cn+1, ζ 6= 0, such that f(ζ) = 0.

Alternatively, a zero of f is a ray {λζ : λ ∈ C}, for f(ζ) = 0 . This ray can be

interpreted as a point in projective space CPn.

We will consider several versions of Newton iteration. One of them will be

given by the operator Npseu : x 7→ x − Df(x)†f(x), where Df(x)† denotes the

Moore-Penrose pseudo-inverse of Df(x) (See Chapter 2).

Since the concept of a zero is not practical computationally, we will consider

the following concept of approximate zero :

Definition 1. Let f ∈ Hd, and let z = z0 ∈ Cn+1, z 6= 0. Let zi+1 =

Npseu(zi). The point z is said to be an approximate zero of f if and only if there is

a zero ζ of f associated to z, such that :

min
λ

‖zi − λζ‖2
‖zi‖2

< 2−2i−1

Another important notion is a version of the concept of height. If a, b ∈ Z, we

define H(a) = |a| and H(a + bi) = |a| + |b|. (This is not the standard definition).

If v is a vector, we define H(v) = maxH(vj) . If f is a polynomial (or a system of

polynomials), H(f) is the maximum of the height of the coefficients of f .

Let S(f) denote the number of non-zero coefficients of f . A reasonable measure

of the size of an input f ∈ Hd would be the quantity S(f) logH(f).

1

2. GLOBAL COMPLEXITY OF POLYNOMIAL-SOLVING 2

2. Global complexity of polynomial-solving

For the purpose of our complexity analysis, a system f of polynomials with

integer coefficients (resp. with Gaussian integer coefficients) will be the list of

integers n, (d1, . . . , dn), (S(f1), f1), . . . , (S(fn), fn), where each fi is a list of mono-

mials fiJ x
J . Those monomials will be represented by integers fiJ , J0, . . . , Jn (resp.

Re(fiJ), Im(fiJ), J0, . . . , Jn).

We define an approximate solution of a system f of polynomials as a list X1,

. . . , X∏
di of points of Cn+1 with Gaussian integer coefficients, such that each Xi

is an approximate zero of f associated to a different zero ray of f , and there is a

Xi associated to every zero ray of f . Each Xi will be represented by the list of its

coordinates (real and imaginary parts).

We will give an algorithm to obtain an approximate solution of a generic system

of polynomial equations with Gaussian integer coefficients. By generic, we mean

that it should not belong to a certain real algebraic variety of the realization of Hd.
The algorithm will require :

O
(

(max di)
3/2µ2

(
(n+ 1)S(f) max di + (n+ 1)3

))
floating point operations, with relative precision

O

(
1

µ2(max di)2(n+ 1)3 + maxS(fi)

)
Here, µ is a condition number, to be defined later.

This result can be stated more precisely in the language of the theory of com-

putation. Our main model of computation will be the Blum - Shub - Smale machine

over Z (See [3]). The complexity results we will obtain will be equivalent, up to

polynomial time, to Turing complexity. In this setting, we will prove the

Main Theorem . There is (we can construct) a Blum-Shub-Smale machine

M over Z, that to the input f ∈ Hd (a system of polynomials with Gaussian integer

coefficients), associates the list of integers M(f) representing
∏
di points of Cn+1

with Gaussian integer coefficients ;

For each n, for each d = (d1, . . . , dn) there is a Zariski open set Ud in Hd
(considered as a real projective space) ;

If f ∈ Ud, then :

1 – M(f) is an approximate solution to f .

2 – The output M(f) is computed within time :(
(
∏

di)(max di)
3/2µ2 + n(

∏
di)

2
∑

di

) (
(n+ 1)S(f) max di + (n+ 1)3

)
×

3. THE GEOMETRY OF POLYNOMIAL-SOLVING 3

×P (logµ,max di, log n, logS(f), log logH(f))

where P is a polynomial, and µ is a condition number, to be defined.

3 – The condition number µ can be bounded by :

µ < µ0H(f)d0

where the numbers µ0 and d0 will be defined later, and depend solely on d =

(d1, . . . , dn).

3. The geometry of polynomial-solving

There are mainly two known classes of algorithms for solving systems of poly-

nomial equations. The oldest class consists of algorithms derived from elimination

theory. Elimination theory reduces polynomial solving to a linear problem in a

high-dimensional space (e.g. dimension

(∑
di

n

)
), the space of monomials of

degree
∑
di − n.

Some of those algorithms were developed at the start of this century (See

Macaulay [7] or Van der Waerden [17]) . At that time, those algorithms were

deemed untractable for more than 2 or 3 equations.

Modern algorithms using algebraic ideas include Gröbner Bases factorizations

or numeric algorithms like those of Canny [4] or Renegar [10]. Some of those

algorithms are particularly suitable to some kinds of sparse systems. When the

system is sparse, it is possible to reduce the linear problem to a more modest

dimension.

The other class of algorithms are the homotopy (path-following) methods. Sev-

eral path-following procedures have been suggested (see Morgan, [8]). Basically, the

algorithm follows a path [f0, f1] in the space of polynomial systems Hd. Here, f1 is

the system we want to solve, and f0 is some system that we know beforehand how

to solve.

If we complexify and projectivize both the spaces of systems and of solutions,

then the solution rays λxt : ft(xt) = 0 depend smoothly on f , except in some de-

generate locus Σ. It turns out that the degenerate locus is an algebraic variety,

called the discriminant variety.

Path-following algorithms produce a finite sequence fti in [f0, f1] ; at each step,

an approximate solution xti for fi is computed, using the previous approximate

solution xti−1
of fti−1

. In this thesis, this is done by a generalization of Newton

iteration.

4. OUTLINE OF THIS THESIS. 4

The complexity of that kind of path-following methods was studied by Shub

and Smale in [12], assuming a model of real number computations. Among other

important results, they bounded the number of homotopy steps necessary to follow

a path in terms of a condition number µ([f0, f1]) = maxf∈[f0,f1] µ(f).

The condition number µ(f) has a simple geometric interpretation : it is the

inverse of the minimum of ρ(f, ζ), the distance between f and the discriminant

variety along the fiber {f(ζ) = 0}.
Therefore, the number of homotopy steps depends on how far is the path [f0, f1]

from the discriminant variety.

4. Outline of this Thesis.

In Chapter 2, the results of [12] on the the quadratic convergence of New-

ton iteration and on the count of homotopy steps will be extended to the case of

approximate Newton iteration.

Indeed, the iterates of good enough approximations x0 of a zero ζ will verify a

condition of the form :

min
λ

‖xi − λζ‖2
‖xi‖2

< max
(

2−2i−1, kδ
)

where k is a small integer, provided the error of each iteration is bounded by

δ.

The robustness theorem of [12] will also be extended to the case of approximate

Newton iteration.

The worst case complexity of approximate Newton iteration is the subject of

Chapter 3. For instance, given f , x and δ, we want an algorithm to approximate

x−Df(x)†f(x), with error at most δ, i.e., with precision δ‖x‖2.

Methods like exact rational or integer calculation, or like interval arithmetics,

are not very efficient for computational or even theoretical complexity purposes,

because of coefficient growth. Therefore, the construction of approximate Newton

operators will be carried on using a machine with a fixed finite precision. Rigorous

error bounds will be obtained, using standard numerical analysis techniques. The

fixed precision machine can easily be constructed from a machine over the integers,

equivalent (up to polynomial time classes) to a Turing machine.

The machine precision necessary to obtain the δ‖x‖2 approximation of x −
Df(x)†f(x) can be bounded in terms of n, d, the height H(f) of f and the condition

number µ(f, x).

5. ACKNOWLEDGEMENTS 5

The global complexity of solving systems of polynomial equations will be ,

roughly speaking , about µ2 logµ times a polynomial in n and max di , times the

number of solutions
∏
di, times the number of non-zero coefficients.

In order to give complexity bounds in terms of classical complexity theory, it

makes sense to require f to have only integer (or Gaussian integer) coefficients.

Although this precludes average-case complexity analysis using measure theory,

this requirement will allow us to obtain some worst case bounds that would be

impossible to obtain using computability over the reals. In Chapter 4, it will be

proved that there are numbers µ(Σ) and d(Σ) depending solely on n and d, such

that whenever µ(f) is finite, µ(f) < µ(Σ)H(f)d(Σ). Here, H is the height of f .

A similar analysis carries on to the conditioning of a whole path in the space

Hd. This will provide us with a worst case bound for µ, hence for the complexity

of solving a generic system f . By generic, we understand that f should not belong

to a real algebraic variety in the realization of Hd, that we will define.

Chapter 5 will provide the algorithms for solving f , and the algorithms for

certifying a given approximate solution.

Although it is not practical to implement a computer program that will always

succeed (provided enough memory is available, of course), it is cheap to implement

a reasonably reliable program, with certification procedures that would guarantee

the results obtained. Some implementation details will also be discussed.

5. Acknowledgements

I am thankful to Steve Smale, John Canny, Hendrik W. Lenstra for their sug-

gestions and advice while writing this thesis.

Also, conversations with the following people were extremely useful : Lenore

Blum, Felipe Cucker, Jim Demmel, Alan Edelman, Tom Emerson, Ioannis Emiris,

Dima Grigoriev, Jan Hetting, Yili Huang, Myong-Hi Kim, Pascal Koiran T.Y. Li,

Klaus Meer, Christian Michaux, Erich Novak, Victor Pan, Doug Priest, Maurice

Rojas, Raymond Russell, Mike Shub, Rose St. John, Denise Wolf.

I was supported by a fellowship from the Conselho Nacional de Pesquisa (CNPq)

of Brasil. Special thanks to Patricia Pinheiro, Marilene Farinasso, and all other

CNPq staff that helped to mantain CNPq active while under very adverse circum-

stances.

5. ACKNOWLEDGEMENTS 6

Special thanks to all the people that helped to convince the government of

Brasil to stop retaining the founds for tuition and fees of the fellowship recipients;

This was at a time some of us were having our registration blocked.

During the years of my PhD, I was on a leave of absence from the Universi-

dade Federal do Rio de Janeiro. I am also thankful to IBM-Brasil, IBM-Yorktown

Heights, and to the Centre de Recerca Matemàtica of the Institut d’Estudis Cata-

lans.

Special thanks to Luiz Carlos Guimaraes, without whom I probably would not

be studying mathematics at this time.

Special thanks to my parents, for their encouragement and support.

I also would like to thank all the people that brought to existence all those

electronic lists and newsgroups : Brasnet, Bras-Noticias, Sinopse, JCL noticias,

CNPQ-l, pg-net, RUI.

This thesis was typeset in AMS-LATEX, using a modification of ucthesis docu-

ment style. Berkeley, July 28, 1993 and Bellaterra, November 1, 1993.

CHAPTER 2

On generalized Newton algorithms :

Quadratic Convergence, Path-following

and error analysis

Three versions of the Newton method for approximating zeros of a

system of homogeneous polynomial equations are presented. Qua-

dratic convergence theorems are obtained for exact and approximate

iteration of the corresponding operators.

A bound on the number of approximate Newton steps necessary for

path-following is estimated. This extends results in Shub - Smale [12]

1. Introduction

Let Hd be the space of all systems of n homogeneous polynomials in n + 1

complex variables, of degree d = (d1, d2, . . . , dn), with complex coefficients. Let

D = max di, and assume D ≥ 2. The space Hd is endowed with the unitarily

invariant Kostlan norm ‖.‖k, defined by ‖f‖k =
√∑

‖fi‖k
2

, where :

‖fi‖k =

√√√√√√
∑
|J|=di

|fiJ |2(
di

J

) =

√√√√ ∑
|J|=di

|fiJ |2(
di!

J0!J1!...Jn!

)

The Kostlan norm ‖.‖k induces a metric dproj(f, g) = minλ
‖λf−g‖k
‖g‖k

in Hd .

A zero of f ∈ Hd is a point ζ ∈ CPn such that f(ζ) = 0. Alternatively, it is a

line through the origin in Cn+1 such that f(ζ) = 0 for all ζ in that line.

Let f ∈ Hd, and x range over Cn+1. Df(x) is a linear operator from Cn+1 into

Cn. A generalized Newton operator is defined by the mapping :

NV : x 7→ x−Df(x)|V (x)
−1
f(x)

where V is a smooth family of hyperplanes in Cn+1 , V (ax) = aV (x), and each

V (x) contains the point x. V (x) will inherit the metric of Cn+1. The notation

Df(x)|V (x)
−1
f(x) represents a point of V (x), as contained in Cn+1.

7

1. INTRODUCTION 8

Different choices of V lead to different versions of Newton iteration, as we will

see.

To each generalized Newton operator, we can associate a few invariants. Those

are functions of Hd × Cn+1, and are invariant under the group generated by the

following transformations :

Unitary :

(f, x) 7→ (f ◦ U−1, Ux) , U ∈ U(n+ 1)

Scaling :

(f1, . . . , fn, x) 7→ (a1f1, . . . , anfn, bx) , ai, b ∈ C?

Scaling invariance implies that those invariants can be considered as functions

of P(Hd)× CPn. We define :

β(f, z) = β(z) =
1

‖z‖2
.
∥∥∥Df(z)|V (z)

−1
f(z)

∥∥∥
2

γ(f, z) = γ(z) = max

{
1, ‖z‖2 max

k≥2

(
1

k!

∥∥∥Df(z)|V (z)
−1
Dkf(z)

∥∥∥
2

) 1
k−1

}
α(f, z) = α(z) = β(z)γ(z)

Here, we have always γ ≥ 1. Also, Dkf(z) is a multilinear operator from(
Cn+1

)k
into Cn. Therefore, those definitions are slightly different from the ones

in [12], where Dkf(z) is restricted to what we call V (x)k.

Invariance of α, β and γ follows from the definitions.

The Newton operator in affine space :

If we set :

V (x) = x+ {0, y1, · · · , yn}

we obtain the (classical) Newton operator in affine space Naff. If α(z0) is small

enough, successive iterates of z0 will converge quadratically to a zero of f . The

following theorem is essentially the Quadratic Convergence Theorem by Shub and

Smale in [12] :

Theorem 1. Let f ∈ Hd Let z0 ∈ Cn+1 have its first coordinate non-zero. Let

αaff(z0) < 1/8. Let the sequence (zi) be defined by zi+1 = Naff(zi). Then there is a

zero ζ of f such that dproj(zi, ζ) ≤ 2−2i−1

1. INTRODUCTION 9

Above, distance in projective space is measured by :

dproj(x, y) = min
λ∈C

{
‖x− λy‖2
‖x‖2

}

There is a robust form of this theorem, that incorporates some error in each

iteration. Since Naff(f, zi) scales in ‖zi‖2, it makes sense to measure the error at

each iteration by : ∥∥zi+1 −Naff(f, zi)
∥∥

2

‖zi‖2
Indeed, we will prove :

Theorem 2. Let f ∈ Hd, let z0 ∈ Cn+1, let the first coordinate of z0 be non-

zero, and let δ ≥ 0 verify : (βaff(f, z0) + δ)γaff(f, z0) < 1/16, and γaff(f, z0)δ <

1/384. Let the sequence (zi), where the first coordinates of zi and z0 are equal,

verify : ∥∥zi+1 −Naff(f, zi)
∥∥

2

‖zi‖2
≤ δ

Then there is a zero ζ of f such that :

dproj(zi, ζ) ≤ max
(

2−2i−1, 6δ
)

Another version of the affine Newton operator was constructed by Morgan [8]

by fixing a random vector y, and setting V (x) = x + y⊥. This random change of

coordinates allows him to use the classical Newton operator (in affine space) with

systems that have zeros at infinity. There are more general Newton operators that

allow to approximate zeros at infinity.

The Newton operator in projective space : If we define :

V (x) = x+ x⊥

we obtain the Newton operator in projective space, which may also be described

by:

Nproj(x) = x−

[
Df(x)

x*

]−1 [
f(x)

0

]

where x* means complex transpose of x. This operator was defined by Shub [11].

We will prove the Theorems :

1. INTRODUCTION 10

Theorem 3. Let f ∈ Hd and let z0 ∈ Cn+1 be such that αproj(z0) < 1/32. Let

the sequence (zi) be defined by zi+1 = Nproj(zi). Then there is a zero ζ of f such

that dproj(zi, ζ) ≤ 2−2i−1

Theorem 4. Let f ∈ Hd, z0 ∈ Cn+1 and assume that δ ≥ 0 verifies :

(βproj(f, z0) + δ)γproj(f, z0) < 1/32,

and γproj(f, z0)δ < 1/640. Let the sequence (zi) verify :∥∥zi+1 −Nproj(f, zi)
∥∥

2

‖zi‖2
≤ δ

Then there is a zero ζ of f such that :

dproj(zi, ζ) ≤ max
(

2−2i−1, 10δ
)

Pseudo Newton operator If we make :

V (x) = x+ kerDf(x)⊥

we obtain the pseudo-Newton operator :

Npseu(x) = x−Df(x)†f(x)

where A† is the Moore-Penrose pseudo-inverse of A, defined by :

A† = A|(kerA)⊥
−1

This notation refers to the case rankDf(x) = n. In the case rankDf(x) < n,

the operator Npseu is not defined.

An equivalent definition in our case is the following : In the particular case the

matrix to invert is diagonal, we set :
λ1

λ2

· · ·
λn 0


†

=


λ1
−1

λ2
−1

· · ·
λn
−1 0


Then we extend this definition to all matrices of rank n by setting, for any U ,

V unitary:

(UΛV)† = V *Λ†U*

1. INTRODUCTION 11

A very important property of the pseudo-inverse of A : Cn+1 → Cn is that A†y

is the vector of minimal norm in the linear space A−1y. Hence,∥∥A†∥∥
2

= min
∥∥A|V −1

∥∥
2

when V ranges over all hyperplanes through the origin. This Newton operator

was suggested by Allgower and Georg [1]. We will prove the Theorems :

Theorem 5. Let f ∈ Hd and let z0 ∈ Cn+1 be such that αpseu(z0) < 1/8. Let

the sequence (zi) be defined by zi+1 = Npseu(zi). Then there is a zero ζ of f such

that dproj(zi, ζ) ≤ 2−2i−1

Theorem 6. Let f ∈ Hd, z0 ∈ Cn+1 and let δ ≥ 0 verify : (βpseu(f, z0) +

δ)γpseu(f, z0) < 1/16, and γpseu(f, z0)δ < 1/384. Let the sequence (zi) verify :

‖zi+1 −Npseu(f, zi)‖2
‖zi‖2

≤ δ

Then there is a zero ζ of f such that :

dproj(zi, ζ) ≤ max
(

2−2i−1, 6δ
)

Path-following and conditioning :

The robustness results in [12] come out naturally in the generalized case. We

can define some more invariants associated to a generalized Newton operator :

µ(f, x) = max
{

1, ‖f‖k
∥∥∥Df(x)|V (x)

−1
diag(

√
di‖x‖di−1)

∥∥∥
2

}
η(f, x) =

∥∥∥diag(di
−1‖x‖2

−di)f(x)
∥∥∥

2

‖f‖k

Invariants µ and η are invariants under unitary transformations and under

scalings of the form (f, x) 7→ (af, bx), a, b ∈ C?. The following estimates relate µ

and η to β and γ :

β(f, x) ≤ µ(f, x)η(f, x)

γ(f, x) ≤ µ(f, x)D3/2

2

The first estimate is obvious. The second one follows from the same proof as

in Shub and Smale [12], III-1 and (in the case γ = 1) from the fact 1 ≤ D3/2/2

when D ≥ 2.

Also, as in [12], the following estimates are true :

1. INTRODUCTION 12

Lemma 1.

η(g, ζ) ≤ dproj(f, g) + η(f, ζ)

µ(g, ζ) ≤ µ(f, ζ)(1 + dproj(f, g))

1−
√
Ddproj(f, g)µ(f, ζ)

The number of steps and precision necessary for following a path (ft, ζt) will

depend on the following Theorems, that are modified versions of Theorem 3 in [12],

I-3 :

Theorem 7. There are ᾱ = 0.02, ū = 0.05 such that, if γ̄ ≥ 1 and :

ηaff(f, ζ)µaff(f, ζ) ≤ ᾱ

γ̄

dproj(x, ζ) ≤ ū

γ̄

γaff(f, ζ) ≤ γ̄

Then setting x′ = Naff(f, x), and ζ ′ the zero associated to x′, we get :

dproj(x
′, ζ ′) ≤ ū

2γ̄

Theorem 8. There are ᾱ = 0.01, ū = 0.005 such that, if γ̄ ≥ 1 and :

ηproj(f, ζ)µproj(f, ζ) ≤ ᾱ

γ̄

dproj(x, ζ) ≤ ū

γ̄

γproj(f, ζ) ≤ γ̄

Then setting x′ = Nproj(f, x), and ζ ′ the zero associated to x′, we get :

dproj(x
′, ζ ′) ≤ ū

2γ̄

Theorem 9. There are ᾱ = 0.02, ū = 0.05 such that, if γ̄ ≥ 1 and :

ηpseu(f, ζ)µpseu(f, ζ) ≤ ᾱ

γ̄

dproj(x, ζ) ≤ ū

γ̄

γpseu(f, ζ) ≤ γ̄

1. INTRODUCTION 13

Then setting x′ = Npseu(f, x), and ζ ′ the zero associated to x′, we get :

dproj(x
′, ζ ′) ≤ ū

2γ̄

It is immediate that :

Corollary 1. In each of the three cases N = Naff, Nproj, Npseu, there are ᾱ,

ū such that, if γ̄ ≥ 1 and :

η(f, ζ)µ(f, ζ) ≤ ᾱ

γ̄

dproj(x, ζ) ≤ ū

γ̄

γ(f, ζ) ≤ γ̄

δ ≤ ū

2γ̄

Then setting x′ such that
‖x′−N(f,x)‖

2

‖x‖2
≤ δ, and if ζ ′ is the zero associated to

x′, we get :

dproj(x
′, ζ ′) ≤ ū

γ̄

A generalization of the Main Theorem of Shub and Smale in [12] for approxi-

mate Newton iteration follows :

Theorem 10. Assume that N = Naff, Nproj or Npseu. Let ᾱ and ū be given

by Theorems 7, 8 or 9, respectively.

Let (ft, ζt) be a path in Hd × Cn+1, so that ft(ζt) = 0. Let µ ≥ max(µ(ft, ζt))

be finite. Let γ̄ ≥ 2
3D

3/2µ. Let z0 verify dproj(z0, ζ0) ≤ ū
γ̄ . Let (ti) be a sequence

such that dproj(fti , fti+1
) ≤ ∆ ≤ 3

8
ᾱ
µγ̄ . Let (zi) verify :∥∥zi+1 −N(fti+1

, zi)
∥∥

2

‖zi‖2
≤ δ ≤ ū

2γ̄

Then dproj(zi, ζti) ≤ ū
γ̄ , and hence α(fti , zi) ≤ ᾱ.

In particular, if the length of the path ft is bounded by L, then 16
9
Lµ2D3/2

ᾱ steps

of approximate Newton iteration with error less than 9
4

ū
D3/2µ̄

suffices to follow the

path (ft, ζt) and obtain a zero of f1.

2. ESTIMATES ON β 14

2. Estimates on β

Let the generalized Newton operator N be one of Naff, Nproj or Npseu. Let zi

be a sequence of points satisfying :

‖zi+1 −N(f, zi)‖2
‖zi‖2

≤ δ

for some δ ≥ 0. In the affine case N = Naff, assume furthermore that V (zi) =

V (zi+1). This follows from the hypothesis of Theorem 2 according to which the

first coordinates of all the zi are equal.

The case δ = 0 represents the exact iteration zi+1 = N(f, zi). For notational

convenience, we will write :

βi = β(f, zi)

γi = γ(f, zi)

αi = α(f, zi) = βiγi

ui =
‖zi+1 − zi‖2
‖zi‖2

γi

α̃i = (βi + δ)γi

ψ(u) = 1 + 2u2 − 4u

The following bounds are obvious, since γi ≥ 1 :

(1)
‖zi+1‖2
‖zi‖2

≤ 1 + ui

(2)
‖zi‖2
‖zi+1‖2

≤ 1

1− ui

Let p(z) be the projection of Cn+1 into the n-plane V (z), in the direction of

kerDf(z). (We assume that Df(z) has rank n). Let p(z′, z) be the restriction

of p(z) to V (z′). Let κ be a constant, κ ≥ ‖p(zi, zi+1)‖2 for all i. In the cases

N = Nproj and N = Npseu, we require the stronger condition κ ≥ ‖p(zi+1)‖2.

If we are using N = Naff, we have V (zi) = V (zi+1), hence can take κ = 1.

If we are using N = Npseu, then by construction we have that V (zi) ⊥
kerDf(zi). It follows that we can also take κ = 1. Later on, we will bound κ

in the case N = Nproj.

2. ESTIMATES ON β 15

The idea of the proof of the quadratic convergence theorem will be to show

that, under certain circumstances, α̃i+1 ≤ 4α̃ 2
i

We start with :

Lemma 2. Under the conditions above,

βi+1 − κ2 ‖zi‖2
‖zi+1‖2

(1− ui)2

ψ(ui)
δ ≤ κ

‖zi‖2
‖zi+1‖2

1− ui
ψ(ui)

γi(βi + δ)2

Proof of Lemma 2

In order to prove Lemma 2, we break βi+1 as follows :

βi+1 =
1

‖zi+1‖2

∥∥∥Df(zi+1)|V (zi+1)
−1
f(zi+1)

∥∥∥
2

(3)

≤ 1

‖zi+1‖2

∥∥∥Df(zi+1)|V (zi+1)
−1
Df(zi+1)|V (zi)

∥∥∥
2∥∥∥Df(zi+1)|V (zi)

−1
Df(zi)|V (zi)

∥∥∥
2

∥∥∥Df(zi)|V (zi)
−1
f(zi+1)

∥∥∥
2

Part 1 : Df(zi+1)|V (zi+1)
−1
Df(zi+1)|V (zi) is the projection p(zi, zi+1) from V (zi)

into V (zi+1) in the direction kerDf(zi+1). It follows that its norm is bounded by

κ :

(4)
∥∥∥Df(zi+1)|V (zi+1)

−1
Df(zi+1)|V (zi)

∥∥∥
2
≤ κ

Part 2 : We first write :

Df(zi)|V (zi)
−1
Df(zi+1)|V (zi) = I +

∑
k≥2

k
Df(zi)|V (zi)

−1
Dkf(zi)

k!
(zi+1 − zi)k−1

We obtain the inequality :∥∥∥Df(zi)|V (zi)
−1
Df(zi+1)|V (zi) − I

∥∥∥
2
≤
∑
k≥2

kui
k−1 ≤ 1

(1− ui)2
− 1

It follows that :

(5)
∥∥∥Df(zi+1)|V (zi)

−1
Df(zi)|V (zi)

∥∥∥
2
≤ 1

2− 1
(1−ui)2

≤ (1− ui)2

ψ(ui)

Part 3 : We expand :

Df(zi)|V (zi)
−1
f(zi+1) = Df(zi)|V (zi)

−1
f(zi) +Df(zi)|V (zi)

−1
Df(zi)(zi+1 − zi)

+
∑
k≥2

Df(zi)|V (zi)
−1
Dkf(zi)

k!
(zi+1 − zi)k

3. ESTIMATES ON γ 16

Since (by hypothesis) zi+1 cannot be at distance more than ‖zi‖2δ of zi −
Df(zi)|V (zi)

−1
f(zi), the projection of zi+1 into V (zi) cannot be at distance more

than κ‖zi‖2δ of the projection of zi −Df(zi)|V (zi)
−1
f(zi). Thus :∥∥∥Df(zi)|V (zi)

−1
f(zi) +Df(zi)|V (zi)

−1
Df(zi)(zi+1 − zi)

∥∥∥
2
≤ κδ‖zi‖2

For the terms of order ≥ 2, we have :∥∥∥∥∥∥
∑
k≥2

Df(zi)|V (zi)
−1
Dkf(zi)

k!
(zi+1 − zi)k

∥∥∥∥∥∥
2

≤
∑
k≥2

(
‖zi+1 − zi‖2
‖zi‖2

γi

)k−1

‖zi+1 − zi‖2

≤ ui
1− ui

‖zi+1 − zi‖2

≤ ui
1− ui

(βi + δ)‖zi‖2

Hence, we obtain :

(6)
∥∥∥Df(zi)|V (zi)

−1
f(zi+1)

∥∥∥
2
≤ ui

1− ui
(βi + δ)‖zi‖2 + κδ‖zi‖2

Putting all together :

Inserting bounds (4), (5) and (6) into inequality (3), we get :

βi+1 ≤
‖zi‖2
‖zi+1‖2

κ
1− ui
ψ(ui)

γi(βi + δ)2 +
‖zi‖2
‖zi+1‖2

κ2 (1− ui)2

ψ(ui)
δ

Hence,

βi+1 −
(
‖zi‖2
‖zi+1‖2

κ2 (1− ui)2

ψ(ui)

)
δ ≤

‖zi‖2
‖zi+1‖2

κ
1− ui
ψ(ui)

γi(βi + δ)2

This proves Lemma 2.

3. Estimates on γ

Lemma 3. Let zi ∈ Cn+1 verify ‖p(zi, zi+1)‖2 ≤ κ, let γi = γ(f, zi) and ui =
‖zi+1−zi‖2
‖zi‖2

γi. Then we have :

γi+1 ≤ κ
‖zi+1‖2
‖zi‖2

1

ψ(ui)(1− ui)
γi

Note that in the statement above, we do not require
‖zi+1−N(zi)‖2

‖zi‖2
≤ δ.

Proof of Lemma 3 : We first estimate

∥∥∥∥Df(zi+1)|V (zi+1)
−1Dkf(zi+1)

k!

∥∥∥∥
2

.

According to the estimates (4) and (5), we have :∥∥∥∥∥Df(zi+1)|V (zi+1)
−1
Dkf(zi+1)

k!

∥∥∥∥∥
2

≤ κ (1− ui)2

ψ(ui)

∥∥∥∥∥Df(zi)|V (zi)
−1
Dkf(zi+1)

k!

∥∥∥∥∥
2

4. ESTIMATES ON α 17

Moreover,∥∥∥∥∥Df(zi)|V (zi)
−1
Dkf(zi+1)

k!

∥∥∥∥∥
2

≤
∑
l≥0

∥∥∥∥∥Df(zi)|V (zi)
−1
Dk+lf(zi)

k!l!

∥∥∥∥∥
2

‖zi+1 − zi‖2
l

≤
∑
l≥0

k + l!(γi)
k−1ui

l

k!l!‖zi‖2
k−1

≤ γi
k−1

‖zi‖2
k−1

∑
l≥0

k + l!ui
l

k!l!

≤ γi
k−1

(1− ui)k+1‖zi‖2
k−1

Thus,∥∥∥∥∥Df(zi+1)|V (zi+1)
−1
Dkf(zi+1)

k!

∥∥∥∥∥
2

≤ κ γi
k−1

ψ(ui)(1− ui)k−1‖zi‖2
k−1

Using ψ(ui) ≤ 1, κ ≥ 1 and extracting the (k − 1)-th root, we obtain :

γi+1 ≤ κ
‖zi+1‖2
‖zi‖2

1

ψ(ui)(1− ui)
γi

This proves Lemma 3.

4. Estimates on α

In this section, we prove Theorems 1, 2, 5 and 6.

Combining Lemma 2, equation (2) and Lemma 3, we obtain the following

result :

Lemma 4. Under the hypotheses and notations of Lemma 2,(
βi+1 − κ2 1− ui

ψ(ui)
δ

)
γi+1 ≤ κ2 1

ψ(ui)2
(βi + δ)2γi

2

Proof of theorems 1 and 5 : If we make δ = 0, Lemma 4 reads:

(7) αi+1 ≤
κ2

ψ(ui)2
αi

2

Assume that we are in the hypotheses of theorems 1 or 5. Then κ = 1. Also,

ui = αi. Assume by induction that αi ≤ 1/8, we obtain ψ(ui) > 0.531 > 1/2 and

equation (7) implies :

αi+1 ≤ 4αi
2 ≤ 1/16 ≤ 1/8

By induction, αi ≤ 2−2i−2 and hence :

βi ≤ αi ≤ 2−2i−2

4. ESTIMATES ON α 18

dproj(zi, ζ) ≤
∑
j≥i

βi ≤ 2αi ≤ 2−2i−1

This proves theorems 1 and 5.

Lemma 4 allows us to prove the following statement :

Lemma 5. Assuming the hypotheses of Lemma 2, and using the same notation,

let
‖zi+1−N(zi)‖2

‖zi‖2
≤ δ, δ > 0, (β0 +δ)γ0 ≤ 1/8, and suppose that for δ 6= 0, 0 ≤ i < j

we have :

(8) βi+1 ≥
1 + κ2(1−ui)

ψ(ui)

4ψ(ui)2

κ2 − 1
δ

where the denominator is positive.

Then (βi+1 + δ)γi+1 ≤ 4((βi + δ)γi)
2, and hence (βj + δ)γj ≤ 2−2j−2.

This also implies βj ≤ 2−2j−2, and dproj(zj , ζ) ≤ 2−2j−1, where ζ is a zero of

f .

Proof of Lemma 5 : Equation (8) is the same as :

βi+1 + δ ≤ 4ψ(ui)
2

κ2

(
βi+1 − κ2 1− ui

ψ(ui)
δ

)
Plugging this formula in Lemma 4, we obtain :

(βi+1 + δ)γi+1 ≤ 4((βi + δ)γi)
2

This proves lemma 5.

Lemma 5 means that in the conditions of Theorems 2 , 4 and 6, as long as δ is

small enough relatively to β, we have quadratic convergence. We still have to prove

that as soon as we are no more in the conditions of Lemma 5, the sequence zi gets

trapped in a disk of radius 6δ over ζ.

Lemma 6. If equation (8) is not true, and ui ≤ 1/16, then βi+1 ≤ 28
15κ

4δ

Proof of Lemma 6 :

βi+1 <
1 + κ2(1−ui)

ψ(ui)

4ψ(ui)2

κ2 − 1
δ ≤

1 + 4
3κ

2

9
4κ2 − 1

δ ≤ 28

15
κ4δ

Lemma 7. Let ζ be a zero of f . Let the disk D of center ζ and radius 2kδ

, k ≥ 3, verify for each z ∈ D the condition γ(f, z) ≤ Γ, with (k + 1)Γδ < 0.1.

Let β(zi) < kδ, zi ∈ D. Then β(zi+1) ≤ (kκ6 + 2κ2)δ. In particular, if κ = 1,

β(zi+1) ≤ kδ and zi+1 ∈ D.

4. ESTIMATES ON α 19

Proof of Lemma 7 : According to Lemma 2,

βi+1 ≤ κ
‖zi‖2
‖zi+1‖2

1− ui
ψ(ui)

γi(βi + δ)2 + κ2 ‖zi‖2
‖zi+1‖2

(1− ui)2

ψ(ui)
δ

Using equation (2),

βi+1 ≤
κ

ψ(ui)
Γ((k + 1)δ)2 +

κ2(1− ui)
ψ(ui)

δ

≤
(

κ(k + 1)2

ψ((k + 1)δΓ)
Γδ +

κ2

ψ((k + 1)Γδ)

)
δ

≤ κ(k + 1)2Γδ + κ2

ψ((k + 1)Γδ)
δ

Using (k + 1)Γδ < 0.1, we get ψ((k + 1)Γδ) > 0.6, hence :

βi+1 ≤
κ(k + 1)0.1 + κ2

0.6
δ ≤

(
1

6
κk +

11

6
κ2

)
δ ≤

(
kκ

6
+ 2κ2

)
δ

This proves lemma 7.

Lemma 8. Let u =
‖z−zi‖2
‖zi‖2

γi ≤ 1
16 . Then γ(z) ≤ 1.52κγi.

For the proof, we use Lemma 3 and equation (1), according to which :

γ(z) ≤ κ(1 + u)

ψ(u)(1− u)
γi

If u ≤ 1/16, then ψ(u) > 3/4 and :

γ(z) ≤ 4× 17

3× 15
κγi ≤ 1.52κγi

Proof of theorems 2 and 6 :

Assume the hypotheses of Theorem 2 (resp. of Theorem 6).

Let k = 3.

Let us fix j such that βi ≥ kδ for i ≤ j and βj+1 ≤ kδ. Let D be the disk of

radius 2kδ over ζ.

Assuming that αi <
1
8 , Lemma 2 implies that dproj(zi, ζ) ≤ 2βi. Indeed, by

applying Lemma 2 to the exact Newton iteration starting from zi, one would obtain :

(9) βi+1 ≤
κ

ψ(αi)
αiβi <

βi
2

Therefore, ζ is at distance at most 2βj of zj , and all points in D are within

distance 4βj of zj . We have to consider several cases :

5. ESTIMATES ON κ 20

General case : j ≥ 1. In that case, αj ≤ 4α0
2 ≤ 1/64. If z ∈ D is scaled

properly,
‖z−zj‖2
‖zj‖2

γj ≤ 4αj ≤ 1/16. Therefore, we can apply Lemma 8 and obtain

γ(z) ≤ 1.52κγj .

We fix Γ ≤ 2γj .

We also have (k + 1)Γδ < 2k+1
k αj ≤ 3αj < 0.1.

Hence, we apply Lemma 7 by induction, and conclude that zj+1, zj+2, . . . be-

long to D.

Special cases : j = 0 and j does not exist (this means that β0 < 3δ). The case

j = 0 is the more difficult, so we prove only this case. The proof of the other case

is similar.

We claim that Γ = 4γ0 verifies maxD γ ≤ 2γ1 ≤ 4γ0 = Γ. Indeed, u0 < 1/16,

hence by Lemma 8, γ1 ≤ 2γ0. The distance from z1 to any point of D is bounded

by 4kδ , and 4kδγ1 ≤ 8kδγ0 < 1/16. We can use Lemma 8 again, and conclude

that maxD γ(z) ≤ 2γ1 ≤ 4γ0. Thus, we can set Γ = 4γ0.

In order to use Lemma 7, we have to check that (k+ 1)Γδ < 0.1. This amounts

to check that 4(k+ 1)γ0δ < 0.1. This follows from the hypothesis on γ0δ. Thus, we

use Lemma 7 by induction, and conclude that zj+k ∈ D.

Theorems 2 and 6 are now proved. In order to prove Theorems 3 and 4 we still

need to be able to bound κ.

5. Estimates on κ

We prove here Theorems 3 and 4. Let zi be a sequence such that :∥∥zi+1 −Nproj(zi)
∥∥

2

‖zi‖2
≤ δ , δ ≥ 0

Assume that α̃proj
i = (βproj

i + δ)γproj
i ≤ ᾱ0, ᾱ0 a constant no more than 1/32.

Since αpseu(zi) ≤ αproj(zi) ≤ α̃proj(zi) ≤ ᾱ0, it follows from equation (9) that

there is a zero ζ at distance of zi no more than 2βpseu(zi) ≤ 2ᾱ0/γ
pseu(zi) ≤

1/16γpseu(zi).

Lemma 9. In the conditions above,

‖p(zi+1)‖2 ≤
1√

1−
(

9.12ᾱ0

ψ(4.56ᾱ0)

)2

5. ESTIMATES ON κ 21

Proof of Lemma 9 : Let us scale ζ so that ‖ζ‖2 = 1. Also, we can scale zi so

that zi ∈ ζ + ζ⊥. Let us choose y ∈ kerDf(zi+1). By similarity of triangles,

‖p(zi+1)‖2 =
√

1− dproj(y, zi+1)2
−1

We now estimate dproj(y, zi+1). We set :

v =
‖zi+1 − ζ‖2
‖ζ‖2

γpseu(ζ)

We apply Lemma 8 to obtain :

γpseu(ζ) ≤ 1.52γpseu(zi) ≤ 1.52γproj(zi)

Also,

‖zi+1 − ζ‖2
‖ζ‖2

≤
‖zi+1 − zi‖2
‖ζ‖2

+
‖zi − ζ‖2
‖ζ‖2

≤
‖zi‖2
‖ζ‖2

(βi + δ + 2βi) ≤ 3(βi + δ)

Hence,

v =
‖zi+1 − ζ‖2
‖ζ‖2

γpseu(ζ) ≤ 4.56ᾱ0

We can scale y so that we can write y = ζ + y⊥, y⊥ ⊥ ζ, then dproj(y, ζ) ≤∥∥y⊥∥∥
2
. By the choice of y,

Df(zi+1)y = Df(zi+1)(ζ + y⊥) = 0

Expanding Df around ζ, we obtain :

Df(ζ)(ζ + y⊥) +
∑
k≥2

k

(
Dkf(ζ)

k!

)
(zi+1 − ζ)k−1

(
ζ + y⊥

)
= 0

Obviously, Dfζ = 0 ; we apply Df(zi+1)† to the equation, and obtain :

y⊥ +
∑
k≥2

k

(
Df(ζ)†Dkf(ζ)

k!

)
(zi+1 − ζ)k−1

(
ζ + y⊥

)
= 0

Now, we have :∥∥∥∥∥∥
∑
k≥2

k

{
Df(ζ)†Dkf(ζ)

k!

}
(zi+1 − ζ)k−1

∥∥∥∥∥∥
2

≤
∑

kγ(ζ)k−1(zi+1 − ζ)k−1

≤
∑

kvk−1

≤ 1

(1− v)2
− 1

Thus,

dproj(y, ζ) ≤
∥∥y⊥∥∥

2
≤

1
(1−v)2 − 1

2− 1
(1−v)2

≤ 2− v
ψ(v)

v ≤ 2v

ψ(v)

6. PROOF OF THE ROBUSTNESS RESULTS 22

Putting all together,

‖p(zi+1)‖2 ≤

√
1−

(
2× 4.56ᾱ0

ψ(4.56ᾱ0)

)2
−1

and Lemma 9 is proved.

Proof of Theorem 3 We check numerically (using Lemma 9) that for ᾱ0 = 1/32,

we have κ ≤ 1.26.

Also, κ2

ψ(ᾱ0)2 ≤ 2.06 ≤ 4, so equation 7 gives :

αi+1 ≤ 4αi
2 ≤ 1/32

And this proves theorem 3.

Proof of Theorem 4 : Using κ ≤ 1.2567, Lemmas 6, 7 and 8 become :

Lemma 10. If equation (8) is not true, and ui ≤ 1/16, then βi+1 ≤ 4.66δ < 5δ

Lemma 11. Let ζ be a zero of f . Let the disk D of center ζ and radius 2kδ ,

k ≥ 4, verify for each z ∈ D the condition γ(f, z) ≤ Γ, with (k + 1)Γδ < 0.1. Let

β(zi) < kδ, zi ∈ D. Then β(zi+1) ≤ (kκ6 + 2κ2)δ. In particular, if κ ≤ 1.2567, then

β(zi+1) ≤ kδ and zi+1 ∈ D.

Lemma 12. Let u =
‖z−zi‖2
‖zi‖2

γi ≤ 1
16 . Then γ(z) ≤ 1.52κγi ≤ 1.92 < 2.

At this time, we set k = 5. The same proof of Theorems 2 and 6 applies word

by word to prove Theorem 4.

6. Proof of the Robustness results

Proof of Lemma 1 :

The first estimate is easy. The second follows from :

µ(g, ζ) = µ(λg, ζ)

= ‖λg‖k

∥∥∥∥(diag(di
−1/2‖ζ‖2

1−di)D(λg(ζ))|Vg(ζ)

)−1
∥∥∥∥

2

≤ ‖λg‖k

∥∥∥∥(diag(di
−1/2‖ζ‖2

1−di)D(λg(ζ))|Vf (ζ)

)−1
∥∥∥∥

2

Then we proceed as in [12], using Lemma 5 of III-1.

Bounds on α(f, x) : Let us put ourselves in the conditions of Theorems 7 , 8

or 9.

6. PROOF OF THE ROBUSTNESS RESULTS 23

By hypothesis,
‖x−ζ‖2
‖ζ‖2

≤ ū. Also, we assume that ū < 1/16.

The following estimate is very similar to Lemma 2 :

Lemma 13.

β(f, x) ≤ κ(1− ū)
(1− ū)β(f, ζ) + κdproj(x, ζ)

ψ(ū)

‖ζ‖2
‖x‖2

Proof of Lemma 13 : Using the fact that
‖x−ζ‖2
‖ζ‖2

γ(ζ) ≤ ū, we can write, using

Parts 1 and 2 of the proof of Lemma 2 :

β(f, x) ≤ κ (1− ū)2

ψ(ū)

1

‖x‖2

∥∥∥Df(ζ)|V (ζ)
−1
f(x)

∥∥∥
2

Expanding the last term into its Taylor series, we obtain :∥∥∥Df(ζ)|V (ζ)
−1
f(x)

∥∥∥
2
≤
∥∥∥Df(ζ)|V (ζ)

−1
f(ζ) +Df(ζ)|V (ζ)

−1
Df(ζ)(x− ζ)

∥∥∥
2

+

∥∥∥∥∥∥
∑
k≥2

Df(ζ)|V (ζ)
−1
Dkf(ζ)

k!
(x− ζ)k−1

∥∥∥∥∥∥
2

≤ ‖ζ‖2(β(f, ζ) + κdproj(x, ζ)) + ‖ζ‖2
ū

1− ū
dproj(x, ζ)

Therefore,

β(f, x) ≤ κ
‖ζ‖2
‖x‖2

(1− ū)
(1− ū)β(f, ζ) + ((1− ū)κ+ ū)dproj(x, ζ)

ψ(ū)

≤ κ
‖ζ‖2
‖x‖2

(1− ū)
(1− ū)β(f, ζ) + κdproj(x, ζ)

ψ(ū)

This proves Lemma 13

Lemma 3 gives :

γ(f, x) ≤ κ γ(f, ζ)

ψ(ū)(1− ū)

‖x‖2
‖ζ‖2

Using Lemma 13 together with the previous estimate, we obtain :

Lemma 14.

α(f, x) ≤ κ2 (1− ū)α(f, ζ) + κū

ψ(ū)2

Now we use Lemma 2 and obtain :

Lemma 15.

β(f, x′) ≤ κ
‖x‖2
‖x′‖2

1− α(f, x)

ψ(α(f, x))
α(f, x)β(f, x)

6. PROOF OF THE ROBUSTNESS RESULTS 24

Proof of Theorems 7 and 9 :

We first set κ = 1. Let us assume for a while that :

(10)
(1− ū)ᾱ+ ū

ψ(ū)2
< 1/32

It follows from Lemma 14 that α(f, x) < 1/8 , and Lemma 15 implies :

β(f, x′) ≤ 1

8ψ(1/8)
β(f, x)

Hence :

β(f, x′) ≤ 1

8ψ(1/8)
(1− ū)

(1− ū)ᾱ+ ū

ψ(ū)

1

γ̄

Hence, in order to obtain β(f, x′) ≤ ū/2γ̄, we need :

(11)
1

8ψ(1/8)
(1− ū)

(1− ū)ᾱ+ ū

ψ(ū)
<
ū

2

Numerically, we can verify that : ū = 0.05 and ᾱ = 0.02 make conditions (10)

and (11) true, proving Theorems 7 and 9.

Proof of Theorem 8 :

Let us assume now that :

(12) κ2 (1− ū)ᾱ+ κū

ψ(ū)2
< 1/32

It follows from Lemma 14 that α(f, x) < 1/32 , and from Lemma 15 we obtain :

β(f, x′) ≤ κ 1

32ψ(1/32)
β(f, x)

Hence :

β(f, x′) ≤ κ 1

32ψ(1/32)
(1− ū)

(1− ū)ᾱ+ ū

ψ(ū)

1

γ̄

Hence, in order to obtain β(f, x′) ≤ ū/2γ̄, we need :

(13) κ
1

32ψ(1/32)
(1− ū)

(1− ū)ᾱ+ ū

ψ(ū)
<
ū

2

If we further assume ᾱ < 1/32, we have always κ < 1.2567. Numerically, we

can verify that : ū = 0.005 and ᾱ = 0.01 make conditions (12) and (13) true,

proving Theorem 8.

Proof of Theorem 10 :

We first set :

γ̄ ≥ 2

3
D3/2µ

6. PROOF OF THE ROBUSTNESS RESULTS 25

and :

∆ ≤ 3

8

ᾱ

µγ̄
≤ 9

16

ᾱ

µ2D3/2

We assume by induction that dproj(zi−1, ζti−1
) ≤ ū

γ̄ . We want to verify that we

are in the conditions of Corollary 1.

Using ᾱ ≤ 0.02, we obtain the estimates : ∆ ≤ 0.04 and
√
D∆µ ≤ 0.04.

We use Lemma 1 :

γ(fti , ζti−1
) ≤ D3/2

2
µ(fti , ζti−1

)

≤ D3/2

2
µ(fti−1 , ζti−1)

1 + ∆

1−
√
D∆µ

≤ 1.04

1.92
D3/2µ

≤ 2

3
D3/2µ ≤ γ̄

η(fti , ζti−1
)µ(fti , ζti−1

) ≤ ∆µ
1 + ∆

1−
√
D∆µ

≤ 3

8

1.04

0.96

ᾱ

γ̄

≤ ᾱ

γ̄

Now we can apply Corollary 1, and conclude that dproj(zi, ζti) ≤ ū
γ̄ . This proves

Theorem 10.

CHAPTER 3

Construction of the Approximate Newton

Operator

The approximate Newton Operators are constructed, and their com-

plexity is estimated.

1. Introduction

Let f = (f1, . . . , fn) be a system of polynomials of degree d = (d1, . . . , dn) in

variables xi, with Gaussian integer coefficients. Let D = max di. Let S(f) be the

number of non-zero coefficients of f . We will consider together the case in which

the fi are polynomials in variables x1, . . . , xn representing points in affine space,

and the case in which the fi are homogeneous in variables x0, . . . , xn.

In chapter 2, we defined three versions of the Newton operator. In the case the

fi are non-homogeneous, the (classical) Newton method in affine space is defined

by :

Naff(f, x) = x−Df(x)−1f(x)

In the homogeneous case, we can define methods :

Nproj(f, x) = x−

[
Df(x)

x*

]−1 [
f(x)

0

]
Npseu(f, x) = x−Df(x)†f(x)

where x* is the complex transpose of vector x and A† is the Moore-Penrose

pseudo-inverse of matrix A.

The two methods above can be considered as mappings from the space Cn+1

into itself. We can also consider the affine method as a mapping from a subset of

Cn+1 into itself :

Indeed, if f is non-homogeneous, we define :

Naff(x0, . . . , xn) = x0
dNaff(x1/x0, . . . , xn/x0)

26

1. INTRODUCTION 27

so that we have mappings of all spaces x0 = c into themselves, for c 6= 0. We

unified the three methods by the notation N(f, x) = x−Df(x)|V (x)
−1

, where V (x)

associates to each x an hyperplane passing through x, and V (λx) = λV (x).

Since N(f, λx) = λN(f, x), λ ∈ C, it follows that N(f, .) sends lines through

the origin into lines through the origin. Therefore, it makes sense to consider N(f, .)

as a mapping of the projective space.

The system f will be given as a list of polynomials f1, . . . , fn. Each polynomial

fi is a list of monomials . . . fiJx
J A monomial is a list of n + 3 integers :

Re(fiJ), Im(fiJ), J0, J1, . . . , Jn, where J0 can be omitted in the non-homogeneous

case.

We define the height H(f) = max(|Re(fiJ)|+ |Im(fiJ)|). This is not the stan-

dard definition of Height. The point x will be given as a list (x0, . . . , xn) of Gaussian

integers. Of course, if the input is given as a list of complex floating point numbers,

the same complexity analysis below will be true. We define the height H(x) of x as

H(x) = max(|Re(xi)|+ |Im(xi)|).

The objective of this chapter is to construct algorithms to compute approxi-

mately the operators Naff, Nproj and Npseu. This means that if N is one of those

operators, and if N ′ is the mapping computed by some algorithm, we want to guar-

antee that the error supx
‖N ′(f,x)−N(f,x)‖

2

‖x‖2
is small. Also, we want a bound on the

complexity of those algorithms.

The concepts of algorithm and complexity require the definition of a computa-

tion and complexity model. Here, we will consider two different settings : numerical

analysis and theoretical computer science.

From the numerical analysis point of view, the complexity will be the number

of floating point operations performed for a given input. For the model of compu-

tation, we will explain in section 2 what we mean by an εm-machine, or a machine

performing correctly rounded finite precision floating point arithmetics with mono-

tone subtraction. The later are standard properties verified by the arithmetic of

most computers today.

One consequence of the correctly rounded arithmetic is that the computed

result fl(a � b) of an arithmetic operation a � b verifies : fl(a � b) = (a � b)(1 + ε) with

|ε| not greater than a fixed constant εm, called the machine epsilon.

Theorem 11. Let 16 < k ∈ N be fixed. Then there is a machine N ′ perform-

ing correctly rounded arithmetic with monotone subtraction, with machine epsilon

1. INTRODUCTION 28

εm = 2−k−1, and requiring O(nDS(f) + n3) floating point operations, such that, if

H(f), H(x) ≤ 1
2εm

:

‖N ′(f, x)−N(f, x)‖2
‖x‖2

≤4µ(f, x)
√
D (p(n) + 2D + 2 + 2 max(S(fi))) εm

+O(εm
2)

where O(εm
2) means a function bounded by some B(n,D, S(f), µ)εm

2.

Above, p(n) is a function of n, defined as 5n2(gcp(n)+1) for the affine method,

as 5(n+1)2(gcp(n+1)+1) for the projective method, and (3.25(n+1)3 +11(n+1)2)

for the pseudo-Newton method. gcp(n) is the maximum complete pivot growth for

a matrix of size n , see Golub and Van Loan [5] or Wilkinson [19]. The function

gcp(n) can be bounded by the formula gcp(n) ≤
√
n
√

2× 3
1
2 × · · · × n

1
n−1 .

The condition number µ(f, x) is defined by :

µ(f, x) = ‖f‖k
∥∥∥Df(x)|V (x)

−1
diag(

√
di‖x‖2

di−1
)
∥∥∥

2

The Kostlan norm ‖.‖k is the unitarily invariant norm in the space of polyno-

mials , and is defined by ‖f‖k =
√∑

‖fi‖k
2
, where :

‖fi‖k =

√√√√√√
∑
|J|=di

|fiJ |2(
di

J

)
As it often happens in numerical analysis, the linear factor in theorem 11 may

be extremely pessimistic. The actual error may be much smaller. On the other

hand, the result above says little about the behavior of the high order terms in

εm
2.

From the point of view of theoretical computer science, we will use the Blum -

Shub - Smale model over Z (See [3]) (equivalent to the Turing model), and give a

bound for the height of numbers used in calculations. The cost of each operation

with numbers of height H will be O(logH) or O(logH log logH). The cost of

accessing position n in the memory is n. In this setting, we obtain :

Theorem 12. There is a machine over Z such that, given a system f of n

polynomials of degree at most D, with S(f) non-zero Gaussian integer coefficients,

a vector x of floating-point complex numbers, µ̄ ≥ µ(f, x), and δ > 0, returns

Nδ(f, x) such that :
‖Nδ(f, x)−Npseu(f, x)‖2

‖x‖2
≤ δ

2. BASIC DEFINITIONS 29

within polynomial time in n, D, logH(f), logH(x), S(f), log µ̄, − log δ.

We will prove this theorem only for the pseudo-Newton method. The proof for

the affine and projective Newton methods is similar.

In all this chapter, we assume without loss of generality that x is scaled so that

1
2 < ‖x‖2 ≤ 1 (just by performing a division by a power of 2).

The results above were obtained after a few arbitrary choices. In many senses,

they are not the best possible algorithms for that problem.

Simple precision is used wherever it is possible. While the usual numerical

analysis literature uses double precision, for instance, to add a list of single precision

numbers, this procedure requires an additional hypothesis on the size of the list.

See, for instance, Golub and Van Loan [5] sections 2.4.6 and 2.4.7, Wilkinson [18]

equation (5.2) of chapter 3, page 113, or ibid., start of section 37, chapter 3, page

152.

In our setting, computing the dot product < v,w >= v
*

w, where v
*

is the

complex transpose of v, and v and w are vectors of dimension n, will introduce a

total error in the result that is bounded by :

((1 + εm)n − 1) ‖v‖2‖w‖2 ≤ nεm‖v‖2‖w‖2

Using double precision we would obtain error bounded by εm‖v‖2‖w‖2, but

only provided n is small enough.

Also, simple and vectorizable algorithms are given preference over more precise

and expensive ones. For instance, there are single precision algorithms for adding

a list of numbers up to precision εm, or up to arbitrary precision (See Priest, [9]).

But precision is not a severe issue here, while speed is crucial.

2. Basic definitions

First of all, we have to define (for the numerical analysis purpose) a model of

computation. We want to model the floating point arithmetic of modern computers.

Let us fix a number k ≥ 16, the number of bits of mantissa.

Definition 2. The set Rfp of floating point numbers is the class of all reals of

the form A2B , with A,B ∈ Z and |A| ≤ 2k.

This definition deliberately ignores the possibility of overflow or underflow (ex-

ponents too small or to large). Now we can define a model of computer :

2. BASIC DEFINITIONS 30

Definition 3. An εm-machine means a Blum-Shub-Smale machine over the

reals [3], with coefficients in Rfp, with the following modifications :

• The even positions of memory contain always integer values.

• The odd positions of memory contain always floating point numbers in

Rfp.
• Computation nodes contain one arithmetic operation each, from +, −, /,

∗, and square root.

• Decision nodes are in the form xi ≥ 0 or xi > 0 or xi = 0.

• If a division by zero or a square root of a negative number occur, execution

stops and the machine outputs nothing.

• There is a function fl : R→ Rfp such that, when a real number x is to be

stored in an odd position of memory, it gets rounded-off to fl(x)

• Correct arithmetics : fl(x) is one of the elements of Rfp nearest to x.

• Monotone subtraction : For all a, b ∈ Rfp, we have : fl(a− b) = −fl(b− a)

Now we introduce some definitions regarding rounding-off :

A consequence of Definition 3 is the 1 + ε property. If representable numbers

have t bits of mantissa, let εm = 2−t−1. Assuming that t ≥ 16, we will have always

εm ≤ 2−17 = 1
131072 . Then the machine verifies the 1 + ε property, defined below :

Definition 4. A machine verifies the 1 + ε property if it is true, for all a, b ∈
Rfp, that :

fl(a � b) = (a � b)(1 + ε) , |ε| ≤ εm

where � is one of +, −, ×, /. Also, fl(
√
x) =

√
x(1 + ε), |ε| ≤ εm.

We say that the relative error of a � b is less than εm.

This property is known to hold in most computer systems available at this time,

except CRAY systems.

We will also need to perform complex arithmetics. A complex number can

be represented by its real and imaginary parts, where elementary operations be-

tween real numbers are performed with correct arithmetics. Therefore, complex

arithmetics can be performed by an ε-machine. However, it is convenient to set

εm = 2−t−1 × 6, so the 1 + ε property will hold for complex sum, subtraction,

multiplication and division. Let us prove this only for divisions :

z

w
=
zw̄

ww̄

2. BASIC DEFINITIONS 31

Let ε = 2−t−1. Then fl(ww̄) = ww̄(1 + ε1)2 and Re(fl(zw̄)) = Re(zw̄)(1 + ε2)2,

where |ε1|, |ε2| ≤ ε. It follows that :

Re
(

fl
(z
w

))
=

Re(zw̄)

ww̄

(1 + ε3)3

(1− ε3)2

Since ε < 2−17, we get :

Re
(

fl
(z
w

))
=

Re(zw̄)

ww̄
(1 + 6ε4)

Proceeding in the same way for the imaginary part, we obtain :

fl(z/w)− z/w = 6ε4Re(z/w) + 6iε5Im(z/w)

|fl(z/w)

z/w
− 1| ≤ 6ε

fl(z/w) =
z

w
(1 + 6ε6)

where |ε3|, |ε4|, |ε5|, |ε6| ≤ ε.

The following notation will be very useful. If εm is the machine epsilon, the

relative error of each calculation, we define the function :

εm(k) =
1

(1− εm)k
− 1

Then we have the following properties, for k, l, n ≥ 1 :

εm < εm(1)

(1 + εm(k))(1 + εm(l)) = 1 + εm(k + l)

εm(k) + εm(l) < εm(k + l)

nεm(k) ≤ εm(nk)

1 + εm(k)

1− εm(l)
< 1 + εm(k + l)

1− εm(k)

1 + εm(l)
> 1− εm(k + l)

However, under the assumption that kεm is small, εm(k) ' kεm.

We will often find inequalities of the form pεm(q) < 1 ; those can be solved by

using the

Lemma 16. Let p, q > 1, and let εm < 1
2pq . Then pεm(q) < 1.

Proof : pqεm < 1
2 implies that 1 − pqεm > 1

2 , hence (1 − εm)pq > 1
2 , so

1
(1−εm)pq < 2, and therefore pεm(q) ≤ εm(pq) < 1.

This shows that there is a machine using k bits of precision such that pεm(q) <

1, where k < 1 + log2 p+ log2 q.

3. ALGORITHMS 32

3. Algorithms

Suppose we are given x and f as in the hypotheses of Theorem 11. S(f) is the

number of non-zero coefficients of f . If f is dense, S(f) =
∑(

di + n

n

)
.

If 1 ≤ i ≤ n and if K is a multi-index of degree di, we denote fiK the coefficient

of fi associated to multi-index K.

We define the following procedure in order to compute the approximate Newton

method in affine space :

ALGORITHM z′′ ← Affine (f, x)

1 Compute yI = xI, where multi-index I appears in f or in Df.

2 Compute bi =
∑
fiK yK

3 Compute Aij =
∑

degj(K) fiK yK−ej

4 Compute L, U, P1, P2 by gaussian elimination

with complete pivoting, where P1AP2 = LU,

P1 and P2 are permutations,

L is lower triangular with entries ≤ 1,

U is upper triangular. For notational convenience,

we will forget about P1 and P2 and write A = LU.

5 Compute z = L−1b by forward-substitution.

6 Compute z′ = U−1z by back-substitution.

7 Compute z′′ = x− z′.

The following are upper bounds of the floating point operation count for each

line.

Line 1 costs at most (1 + n)(D − 1)S(f) floating point operations, since there

are S(f) non-zero coefficients, each of which appears at most once in f and n times

in Df .

Line 2 requires at most 2S(f) operations, while Line 3 requires at most 3nS(f)

operations.

For Line 4, we need to perform Gaussian elimination, and that takes at most

2
3n

3 floating point operations. See Golub and Van Loan [5], Algorithm 3.2.3, page

97.

Forward and backward substitution require n(n−1)
2 multiplications, n(n−1)

2 sums

or subtractions and n divisions, hence each of them takes at most n2 operations.

In the case of Line 5, we know that the diagonal of L contains only ones, so we do

3. ALGORITHMS 33

not need to perform the n divisions. Hence, the cost of Lines 5 and 6 is bounded

by n(n− 1) and n2, respectively.

Line 7 requires only n operations.

Hence, the total operation count is :

(14) (nD + 2n+D + 1)S(f) +
2

3
n3 + 2n2

For the Newton method in Projective space, we will have n+ 1 variables, and

we use the formula :

Nproj(f, x) = x−

[
Df(x)

x*

]−1 [
f(x)

0

]
Using the same algorithm, the operation count becomes :

(15) (nD + 2n+ 2D + 3)S(f) +
2

3
(n+ 1)3 + 2(n+ 1)2

For the pseudo-Newton case, we can modify the algorithm as follows :

ALGORITHM z′′ ← Pseudo (f, x)

1 Compute yI = xI, where multi-index I appears in f or in Df.

2 Compute bi =
∑
fiK yK

3 Compute Aij =
∑

degj(K) fiK yK−ej

4 Compute Q, R such that At = Q

[
R

0

]
5 Compute z = Rt

−1
b by forward-substitution.

6 Compute z′ = Q:,1:nz.

7 Compute z′′ = x− z′.

Lines 1 to 3 are as above.

For Line 4, we use Householder QR factorization, as in Algorithm 5.2.1, page

212 in Golub and Van Loan [5]. This algorithm takes 2n2(n+1−n/3) = 4
3n

3 +2n2

floating point operations. This includes n square root operations on real numbers.

Line 5 will take at most (n+ 1)2 operations.

Q is returned not as a matrix, but as a list of Householder vectors. Thus,

computing step 6 will require 3n2 operations.

4. SKETCH OF THE PROOF OF THEOREMS ?? AND ?? 34

Operation count (summary)

Line Affine Projective Pseudo-Newton

1 (1 + n)(D − 1)S(f) (2 + n)(D − 1)S(f) (2 + n)(D − 1)S(f)

2 2S(f) 2S(f) 2S(f)

3 3nS(f) 3(n + 1)S(f) 3(n + 1)S(f)

4 2
3
n3 2

3
(n + 1)3 4

3
n3 + 2n2

5 n(n− 1) (n + 1)n (n + 1)2

6 n2 (n + 1)2 3n2

7 n n + 1 n + 1

Total (nD + 2n + D + 1)S(f) (nD + 2n + 2D + 3)S(f) (nD + 2n + 2D + 3)S(f)

+ 2
3
n3 + 2n2 + 2

3
n3 + 6n2 + 6n + 8

3
+ 4

3
n3 + 4n2 + 3n + 2

4. Sketch of the proof of Theorems 11 and 12

Let us consider for a while the operators :

Maff : A, b 7→ A−1b

Mproj : x′, A, b 7→

[
A

x′
*

]−1(
b

0

)
Mpseu : A, b 7→ A†b

We divide the algorithm in three phases : Phase 1 is lines 1 to 3, Phase 2 is

lines 4 to 6, and Phase 3 is line 7.

Given x, f , Phase 1 computes A and b, with a certain error δ1A and δ1b. Those

are called forward error of Phase 1. It will be easy to find a bound for them. x = x′

is passed exactly to Phase 2.

The forward error of Phase 2 is harder to bound. It is much easier to prove

that given A, x′, b, Phase 2 returns M(x′ + δ2x,A+ δ2A, b+ δ2b), where δ2x, δ2A

and δ2b are called the backward error of Phase 2. We will give bounds for those

quantities.

If we set δ′x = δ2x, δA = δ1A + δ2A, δb = δ1b + δ2b, then we are indeed

computing M(x+ δx′, Df(x)|V (x) + δA, f(x) + δb), M one of Maff, Mproj, Mpseu.

We will bound the derivatives of M , and then obtain bounds on the total error

of Phases 1 and 2.

Phase 3 is just a subtraction, and hence, the total error of the algorithm is easy

to bound.

6. SOME BACKWARD ERROR ANALYSIS IDENTITIES 35

5. Forward error analysis of Phase 1

If A is a matrix, we define ‖A‖max = max |Aij | . This is a vector norm, not a

matrix norm : it is not true in general that ‖AB‖max ≤ ‖A‖max‖B‖max. In this

section, we bound ‖δ1A‖max and ‖δ1b‖2. We recall that ‖x‖ ≤ 1, so :

‖f(x)‖ ≤ ‖f‖k

where ‖.‖k is the Kostlan norm.

Since each of the fiK xK is computed with relative error εm(di), the sum fi(x)

is computed up to a total error δ1b such that :

|δ1bi| ≤ εm(di + S(fi))
∑
|fiK | |xK |

Adding squares for each i and extracting the square root, we obtain :

(16) ‖δ1b‖2 ≤ ‖f‖kεm(D + maxS(fi))

In order to bound ‖δ1A‖max, we claim that∥∥∥∥ ∂

∂xj
fi

∥∥∥∥
k

≤
√
di‖fi‖k

Indeed, ∥∥∥∥ ∂

∂xj
fi

∥∥∥∥
k

≤

√√√√√√√
∑ fiJ

2(
di − 1

J − ej

) max Jj

≤
√
di

√√√√√√√
∑ fiJ

2(
di

J

)
From this claim we deduce that :

(17) ‖δ1A‖max ≤
√
di‖f‖kεm(D + S(fi) + 1)

6. Some backward error analysis identities

Products : From the (1 + ε) property, we deduce :

(18) fl(ab) = (a+ δa)b

where |δa| ≤ |a|εm.

6. SOME BACKWARD ERROR ANALYSIS IDENTITIES 36

Divisions :

(19) fl(b/a) =
b

a+ δa

with |δa| ≤ |a|εm(1). Indeed, b
a (1 + εm) = b

a+δa with |δa| ≤ |a|(1
1+ε − 1), where

|ε| ≤ εm, so (1
1+ε − 1) ≤ εm(1).

Sums of products : For sums of products, we have :

(20) fl(
∑

1≤i≤n

aibi) =
∑

1≤i≤n

(ai + δai)bi

with |δai| ≤ |ai|εm(n).

Backward and forward substitution : Now, let U be a n×n upper-triangular

matrix. We want to compute z = U−1y by backward substitution :

For i = n down to 1, zi =
yi −

∑
j>i Uijzj

Uii

Let |U | denote the matrix of the absolute values of the coefficients of U . Then

we have :

z = (U + δU)−1y

where |δUij | ≤ εm(n)|Uij | when i 6= j, and |δUii| ≤ εm(2)|Uii|. Thus, we have

always, for n ≥ 2 :

(21) |δUij | ≤ εm(n)|Uij |

This is still true when n = 1, trivially. The same bound is true for forward

substitution.

Householder transforms : We will now bound the backward error of a House-

holder transform. We compute the Householder transform in the following order :

Hv(y) = y +

(
−2(vty)

(vtv)

)
v

According to equation (20), vtv and vty are computed with total error bounded

by ‖v‖2
2
εm(n) and ‖v‖2‖y‖2εm(n), respectively. Multiplication by−2 is just adding

one to the exponent, and changing sign, so it does not introduce new rounding-off

error.

Let w = −2 v
ty
vtv v. Each wi is computed up to error εm(2n+ 2)‖y‖2. Therefore,

and since ‖Hv(y)‖2 = ‖y‖2, the total error is less than εm(2n + 3)‖y‖2. Since Hv

is unitary, this is also the backward error :

(22) ‖δy‖2 ≤ ‖y‖2εm(2n+ 3)

6. SOME BACKWARD ERROR ANALYSIS IDENTITIES 37

Products of Householder transforms : Let Q = H1H2 . . . Hn be a product

of Householder transforms. Then :

fl(Qy) = (Q+ δQ)y = (H1 + δH1)(H2 + δH2) . . . (Hn + δHn)y

That means that :

‖δQ‖2 ≤
∑
‖δHi‖2 +

∑
‖δHi‖2‖δHj‖2 + . . .

≤ εm(2n2 + 3n)

If, however, the i-th Householder vector contains at most i non-zero coordinates,

we obtain the bound :

εm(

n∑
i

2i+ 3) = εm(n2 + 4n)

LU decomposition : We also need to bound the backward error δgA of the LU

decomposition : A + δgA = LU . Recall that we use complete pivoting, but we do

not write the permutation matrices, since permutation introduces no floating point

operation. Let |L| be the matrix of the absolute values of elements of L. Since we

perform n− 1 pivot steps, we have the formula below (see also Theorem 3.3.1 page

105 in Golub and Van Loan [5]) :

|δgA| ≤ |L||U |εm(3n− 3)

By construction |Lij | ≤ 1, but |Uij | is harder to bound ; indeed, it is usual to

define the pivot growth factor gcp such that, in exact arithmetic :

(23) |Uij | ≤ gcp max |Aij |

It is known that gcp, in the case of complete pivoting, can be bounded by the

formula

gcp(n) ≤
√
n

√
2× 3

1
2 × · · · × n

1
n−1

We obtain the formula :

(24) |δAij | ≤ ngcp(n) max |Aij |εm(3n− 3)

QR decomposition : Again, we set :

A+ δqrA = QR

At step i, in order to obtain the Householder vector v, setting x = Ai:n,i, we

first compute β = x1 + sgn(x1)‖x‖2. This is done with relative error bounded by

7. BACKWARD ERROR ANALYSIS OF PHASE 2 38

εm(n−i+1
2 + 1). Then we do v1 = x1 and for j = 2, . . . , n − i + 1, we compute

vj = xj/β. We obtain v with relative error (in each coordinate) bounded by

εm(n−i+1
2 + 2). This also bounds the error

∥∥Hv −Hfl(v)

∥∥
2

.

Applying Hfl(v) introduces further error, bounded by εm(2(n − i + 1) + 3). It

follows that per step, we introduce error :

‖δH‖2 ≤ εm
(

5n− 5i+ 10

2

)
It follows that at the end, we obtain Q and R such that :

(Q+ δQ)R = A

with error :

‖δQ‖2 ≤ εm(2.25n2 + 5.25n)

We easily see that δqrA = −δQ R. We know that ‖R‖2 = ‖A‖2, so we obtain :

‖δqrA‖2 ≤ ‖A‖2εm(2.25n2 + 5.25n) ≤ nmax(|Aij |)εm(2.25n2 + 5.25n)

7. Backward error analysis of Phase 2

The Newton operator in affine space produces matrices L and U such that

A−LU = δgA, where δgA verifies equation (24). Because of rounding-off in lines 5

and 6, the algorithm computes fl(M(A, b)) = (U + δU)−1(L+ δL)−1b, so we write :

(A+ δ2A)−1 = (U + δU)−1(L+ δL)−1

Or :

A+ δ2A = (L+ δL)(U + δU)

= A+ δgA+ δLU + LδU + δLδU

Subtracting A from both sides, and passing to the matrix of absolute values,

we obtain :

|δ2A| ≤ |δgA|+ |δL||U |+ |L||δU |+ |δL||δU |

Inserting formulas (21) , (23) and (24), we obtain :

(25) ‖δ2A‖max = max(|Aij |) ≤ εm(5n2(gcp(n) + εm(n)))(‖A‖max + ‖δ2A‖max)

For the Newton operator in projective space, we obtain :

(26) ‖δ2A‖max ≤ εm(5(n+ 1)2(gcp(n+ 1) + εm(n+ 1)))(‖A‖max + ‖δ2A‖max)

For the pseudo-Newton method, we write :

δ2Aij = δqrAij + δR Qt +R δQt + δR δQt

8. CONDITIONING OF M 39

‖δ2Aij‖2 ≤ ‖δqrAij‖2 + ‖δR‖2
∥∥Qt∥∥

2
+ ‖R‖2

∥∥δQt∥∥
2

+ ‖δR‖2
∥∥δQt∥∥

2

Hence,

‖δ2A‖max ≤ ‖δ2A‖2(27)

≤ εm(3.25(n+ 1)2 + 10.25(n+ 1) + εm((n+ 1)3 + 4(n+ 1)2))

(n+ 1)(‖A‖max + ‖δ2A‖max)

8. Conditioning of M

Conditioning of matrix inversion : Let A(t) be a non-singular matrix,

depending on a parameter t. From the formula A(t)−1A(t) = I we obtain :

(28)
∂

∂t
(A(t)−1) = A(t)−1 ∂

∂t
A(t)A(t)−1

Let us use that formula for A as depending of entry Aij :

∂

∂Aij
A−1 = A−1 [0 ei 0]A−1

Recall that Maff(A, b) = A−1b, so we write :

∂

∂Aij
M(A, b) =

[
0A−1ei0

]
A−1b

We now consider the operator ∂
∂AM(A, b). This operator associates to each

n× n matrix X the vector Y A−1b, where Yij = (A−1)ijXij .

Let ‖.‖max,2 be defined as the norm of operators from the vector space of n×n
matrices endowed with the norm ‖.‖max into the space of n vectors endowed with

the 2-norm ‖.‖2. From the inequality : ‖Y ‖2 ≤ ‖X‖max

∥∥A−1
∥∥

2
, we deduce the

formula :

(29)

∥∥∥∥ ∂

∂A
M(A, b)

∥∥∥∥
max,2

≤
∥∥A−1

∥∥
2

∥∥A−1b
∥∥

2

Also, considering ∂
∂bM(A, b) as a linear operator and using the matrix 2-norm,

we have : ∥∥∥∥ ∂∂bM(A, b)

∥∥∥∥
2

≤
∥∥A−1

∥∥
2

Conditioning for Newton in projective space : Recall the definition of

Mproj :

Mproj(x,A, b) =

[
A

x*

]−1 [
b

0

]

8. CONDITIONING OF M 40

As in the case of Newton in affine space,

∂

∂Aij
Mproj(x,A, b) =

0

[
A

x*

]−1

ei0

[A

x*

]−1

b

Hence : ∥∥∥∥ ∂

∂A
Mproj(x,A, b)

∥∥∥∥
max,2

≤

∥∥∥∥∥∥
[
A

x*

]−1
∥∥∥∥∥∥

2

∥∥∥∥∥∥
[
A

x*

]−1

b

∥∥∥∥∥∥
2

The derivative on x is the same as the derivative in A. As in the affine case,

also, ∥∥∥∥ ∂∂bM(x,A, b)

∥∥∥∥
2

≤

∥∥∥∥∥∥
[
A

x*

]−1
∥∥∥∥∥∥

2

The pseudo-Newton case : Now, Mpseu(A, b) = A†b. It is easy to check that :∥∥∥∥ ∂∂bNpseu(A, b)

∥∥∥∥
2

=
∥∥A†∥∥

2

For the derivative in Aij , we parametrize :

A(t) = A+ eiej
tt

Let V (t) be the space kerA(t)⊥. Then we have :∥∥A(t)†
∥∥

2
=
∥∥∥A(t)|V (t)

−1
∥∥∥

2
≤
∥∥∥A(t)|V (0)

−1
∥∥∥

2
=
∥∥A(0)†

∥∥
2

by construction of the pseudo-inverse. Thus :∥∥∥∥ ∂

∂A
Mpseu(A, b)

∥∥∥∥
max,2

≤
∥∥A†∥∥

2

∥∥A†b∥∥
2

What does this mean : In a first order setting, we can assume thatDf(x)−A =

δA with ‖δA‖max ∈ O(εm), so that it makes sense to discard the terms in εm
2, and

write : ∥∥fl(Maff)−Maff
∥∥

2
<
∥∥Df(x)−1

∥∥
2

∥∥Df(x)−1f(x)
∥∥

2
‖δA‖max

+
∥∥Df(x)−1

∥∥
2
‖δb‖2 +O(εm

2)

Inserting inequalities
∥∥Df(x)−1

∥∥
2
≤ 2µ(f,x)

‖f‖k
and

∥∥Df(X)−1f(x)
∥∥

2
≤ β(f, x),

we get the formula :

(30)
∥∥fl(Maff)−Maff

∥∥
2
<

2µ(f, x)

‖f‖k
(β(f, x)‖δA‖max + ‖δb‖2)

9. FIRST ORDER ANALYSIS 41

In the same way, we obtain formulas :

(31)∥∥fl(Mproj)−Mproj
∥∥

2
<

2µ(f, x)

‖f‖k
(β(f, x)‖δA‖max + β(f, x)‖δx‖max + ‖δb‖2)

(32) ‖fl(Mpseu)−Mpseu‖2 <
2µ(f, x)

‖f‖k
(β(f, x)‖δA‖∞ + ‖δb‖2)

It is possible to make the formulas above more rigorous, by bounding
∥∥A−1

∥∥
2

and
∥∥A−1b

∥∥
2

for A, b in neighborhoods of Df(x)|V (x)
−1

and f(x), respectively.

This will be done to establish the polynomial time bound for the algorithm.

9. First order analysis

At this time, we can compute the error in N(f, x), up to O(εm
2) and prove

Theorem 11. Recall we defined the function p(n) in three different cases :

paff(n) = 5n2(gcp(n) + 1)

pproj(n) = 5(n+ 1)2(gcp(n+ 1) + 1)

ppseu(n) = (3.25(n+ 1)3 + 11(n+ 1)2)

We summarize the results obtained in equations (17), (16), (25), (26) , (27) ,

(30), (31) and (32) in the following table. Depending on the algorithm, p = paff,

pproj or ppseu. In the projective case, x′ is considered as part of matrix A :

First order analysis

Quantity Bound

‖δ1A‖max (D + 1 + maxS(fi))
√
D‖f‖kεm

‖δ2A‖max p(n)
√
D‖f‖kεm∥∥∂N

∂A

∥∥
max,2

2µ(f,x)
‖f‖k

‖δ1b‖2 (D + maxS(fi))‖f‖kεm∥∥∂N
∂b

∥∥
2

2µ(f,x)β(f,x)
‖f‖k

Step 7 (1 + β(f, x))εm

Total (2µ(f, x)
√
D(p(n) +D + 1 + max(S(fi)))

+β(f, x)(D + max(S(fi)))) + 1 + β(f, x))εm

In any of the three cases, taking into account that β(f, x) < 1 (Indeed, β is

typically much smaller, near an approximate zero), and dividing by ‖x‖2 ≥
1
2 , we

10. CONSTRUCTION OF THE FINITE PRECISION MACHINE 42

obtain the bound :

‖N ′(f, x)−N(f, x)‖
‖x‖

≤4µ(f, x)
√
D (p(n) + 2D + 2 + 2 max(S(fi))) εm

+O(εm
2)

This proves Theorem 11 .

10. Construction of the finite precision machine

In this section, we show how to construct a Blum-Shub-Smale machine over Z
simulating a complex ε-machine, and therefore performing correct arithmetics with

the 1 + ε property. Let H be an integer not less than 2/εm, where εm is fixed. We

will prove that

Lemma 17. An ε-machine can be simulated by a machine over Z, such that

sum, subtraction, multiplication, division, and square rooting can be performed in

time O(− log(ε)(log(− log ε))2), provided no overflow or underflow occur.

In particular, if c = max(− log(ε), r + e0) where r is the number of floating

point operations and e0 is the maximum number of exponent bits in the input and

in the constants in the machine, then no overflow or underflow occur and complex

sum, subtraction, multiplication, division and square rooting can be performed in

time O(c(log c)2)

Proof : The second part of the Lemma follows from the fact that if we start

with e0 bits of exponent, we can only multiply the exponent by 2 at each floating

point operation, so the final exponent will be at most 2e0+r ≤ 2c, so that c bits will

accommodate all the possible values of the exponent during the computation.

Floating point numbers can be represented by two integers : the mantissa

and the exponent. Computation of sum, subtraction, multiplication and divi-

sion are easy. We will show how to compute square roots within the time bound

O(− log(ε)(log(− log ε))2).

Let z be a real floating-point number, and assume without loss of generality

that 1/2 < z ≤ 2. We want to find a root of :

f(x) = x2 − z

We compute :

f ′(x) = 2x

f ′′(x) = 2

10. CONSTRUCTION OF THE FINITE PRECISION MACHINE 43

We will use the affine Newton algorithm in one variable. The invariants are :

β(x) =
x2 − z

2x

γ(x) =
1

2x

α(x) =
x2 − z

4x2

Let x0 = z+1
2 , then :

α(x0) =
1

4

(z − 1)2

(z + 1)2

It is easy to verify that the function α(x0) in function of z is bounded above

by 1
36 when z is in [1/2, 2]. Also, γ(z) ≤ 4.

Assume we have a machine with precision εm ≤ ε/48, εm < 5768.

The operator Naff : x 7→ x − f(x)
f ′(x) =

x+ z
x

2 can be computed in two floating

point operations.

|fl(
z

x
)− (

z

x
)| < |x|εm|

z

x2
| ≤ 2|x|εm

|fl(Naff(x))−Naff(x)|
|x|

< (1 + 2εm)(1 + εm)− 1 < 4εm

Hence
|fl(Naff(x))−Naff(x)|√

1 + x2
< 4εm

Thus, we can compute the operator Naff : x 7→ x− f(x)
f ′(x) in such a way that :∥∥fl(Naff(x))−Naff(x)

∥∥
2

‖x‖2
≤ δ

with δ ≤ ε/12, with δ < 1442. We are in the conditions of Theorem 2, Chapter

2 :

α(x0) + δγ(x0) < 1/16, εγ(x0) < 1/384

According to that Theorem, we are able obtain an approximation of precision 6δ <

ε/2 in log2− log2 δ iterations, each of these consisting of 2 floating point operations

with precision ε/48.

This does not give us always the correctly rounded result. This algorithm may

give us a value x at distance ε/2 of two representable numbers x1 and x2. Those

numbers are the candidates to be the correctly rounded result. In order to choose

the right one, we still have to compute sgn(x2−z). But this introduces a very small

additional cost.

Hence, the cost of square-rooting is still O(logH(log logH)2), and Lemma 17

is proved.

11. POLYNOMIAL TIME ANALYSIS 44

11. Polynomial time analysis

We are proving Theorem 12 for the pseudo-Newton method only. A very similar

proof could be given for the other two methods, by using QR factorization instead

of LU factorization.

We will first give rigorous bounds to ‖A−1‖ and ‖A−1b‖. This bounds will be

provided by the Lemma :

Lemma 18. Assume that :

‖δA‖2 <
‖f‖k

4µ(f, x)

‖δb‖2 <
‖f‖k

2

Then : ∥∥(Df(x)|V (x) + δA)−1
∥∥

2
<

4µ(f, x)

‖f‖k∥∥(Df(x)|V (x) + δA)−1(f(x) + δb)
∥∥

2
< β(f, x) + 4µ(f, x)

Let A = Df(x)|V (x) + δA, and b = f(x) + δb.

Under the hypotheses of the Lemma, we have :

‖δA‖2 <
1

2
∥∥∥Df(x)|V (x)

−1
∥∥∥

2

Hence ∥∥∥Df(x)|V (x)
−1
A− I

∥∥∥
2
<

1

2
Inverting, we get :∥∥A−1Df(x)|V (x) − I

∥∥
2
<

1

2
+

1

4
+

1

8
+ · · · < 1

Multiplying by Df(x)|V (x)
−1

:∥∥δA−1
∥∥

2
=
∥∥∥A−1 −Df(x)|V (x)

−1
∥∥∥

2
<
∥∥∥Df(x)|V (x)

−1
∥∥∥

2

It follows that : ∥∥A−1
∥∥

2
< 2
∥∥∥Df(x)|V (x)

−1
∥∥∥

2
<

4µ(f, x)

‖f‖k

For
∥∥A−1b

∥∥
2
, we observe that we have :

‖δb‖2 <
‖f‖k

2

11. POLYNOMIAL TIME ANALYSIS 45

Now we write :∥∥A−1b
∥∥

2
≤
∥∥∥Df(x)|V (x)

−1
f(x)

∥∥∥
2

+
∥∥∥Df(x)|V (x)

−1
∥∥∥

2
‖δb‖2

+ ‖δA‖2‖f(x)‖2 + ‖δA‖2‖δb‖2

≤ β(f, x) + µ(f, x) + 2µ(f, x) + µ(f, x)

≤ β(f, x) + 4µ(f, x)

This proves lemma 18

It follows from Lemma 18 that forA in a neighborhood of radius δA ofDf(x)|V (x)

and for b in a neighborhood of radius δb of f(x), such that ‖δA‖2 ≤ ‖f‖k/4µ(f, x)

and ‖δb‖2 ≤ ‖f‖k/2, the following bounds hold :∥∥∥∥ ∂

∂A
Mpseu(A, b)

∥∥∥∥
max,2

≤
∥∥A†∥∥

2

∥∥A†b∥∥
2

≤ 4µ(f, x)

‖f‖k
(β(f, x) + 4µ(f, x))∥∥∥∥ ∂∂bMpseu(A, b)

∥∥∥∥
2

≤
∥∥A†∥∥

2
≤ 4µ(f, x)

‖f‖k
We can use the mean value inequality and, for any A, b in the same neighbor-

hood, we obtain :

(33)
∥∥Mpseu(A, b)−Df(x)†f(x)

∥∥
2
≤

≤ 4µ(f, x)

‖f‖k
(β(f, x) + 4µ(f, x))

√
n+ 1‖δA‖max +

4µ(f, x)

‖f‖k
‖δb‖2

Now, assume the hypotheses of theorem 12. We choose εm so that the following

conditions are true :

16µ̄(1 + 4µ̄)
√
Dεm(2D + 2 + 2 maxS(fi) + p(n)) < δ(34)

8µ̄
√
Dεm(2D + 1 + 2 maxS(fi) + p(n)) < 1(35)

εm(p(n)) < 1/2(36)

εmH(f) < 1/2(37)

εmH(x) < 1/2(38)

11. POLYNOMIAL TIME ANALYSIS 46

It is easy to see that condition (34) implies conditions (35) and (36). By using

Lemma 16, we choose :

(39) εm =
1

32
δ µ̄(1 + 4µ̄)

√
D(2D + 1 + 2 maxS(fi) + p(n)) + 2H(f) + 2H(x)

This choice of εm limits the computing time for each elementary floating point

operation to a polynomial in − log δ, log µ̄, logD, log n, log maxS(fi), logH(f),

logH(x), and logarithms of the above. The total number of floating point opera-

tions is already bounded by a polynomial in n, D, and S(f). Lemma 17 gives a

worst case time bound that is polynomial in n, D, logH(f), logH(x), S(f), log µ̄

and − log δ, as stated in the theorem.

It remains to prove that the result obtained is within error δ of the correct

pseudo-Newton iteration.

Equation (27), together with condition (36) becomes :

‖δ2A‖max ≤ εm(ppseu(n))(‖A‖max + ‖δA‖max)

Adding equation (17), and knowing that ‖A‖max ≤ ‖f‖k
√
D, we obtain :

‖δA‖max ≤ ‖f‖k
√
Dεm(D + 1 + maxS(fi)) + εm(ppseu(n))(‖A‖max + ‖δA‖max)

Rearranging,

‖δA‖max ≤
‖f‖k

√
Dεm(D + 1 + maxS(fi) + ppseu(n))

1− εm(p(n))

Introducing again condition (36), we get :

‖δA‖max ≤ 2‖f‖k
√
Dεm(D + 1 + maxS(fi) + ppseu(n)) ≤

‖f‖k
4µ̄

The last inequality following from condition (35). For ‖δb‖2, we had the bound

(16) :

‖δb‖2 ≤ ‖f‖kεm(D + maxS(fi)) < ‖f‖k/2

Hence, we can use bound (33). The total error is less than :

8µ̄(β + 4µ̄)
√
Dεm(D + 1 + maxS(fi) + ppseu(n))+

+4µ̄εm(D + maxS(fi)) + (1 + β)εm

Since β ≤ 1, the total error of the algorithm is less than :

8µ̄(1 + 4µ̄)
√
Dεm(2D + 2 + maxS(fi) + ppseu(n))

According to condition (34), this is less than δ/2, so that the error over ‖x‖2
is less than δ, qed.

CHAPTER 4

Gap theory and estimate of the condition number

In this chapter, gap theorems are introduced. The condition number

of systems and paths is estimated in terms of heights. Newton itera-

tion is used to decide if a root is rational. A result on root separation

is also stated.

1. Introduction

Let Hd be the space of all systems of n homogeneous polynomial equations of

degree d = (d1, . . . , dn) in n + 1 variables (x0, . . . , xn), with complex coefficients.

Let Σ be the locus of all systems in Hd such that there is a solution x 6= 0, f(x) = 0

such that Df(x) does not have full rank. Σ is an algebraic variety, called the

discriminant variety. Systems belonging to Σ are called degenerate.

Let f = (f1, . . . , fn) ∈ Hd be non-degenerate, n ≥ 2, D = max di ≥ 2. If we

require f to have only integer (or rational, or gaussian integer, or gaussian rational)

coefficients, then we will be able to obtain a certain number of conclusions about

the roots of the system.

In this chapter, we are interested about two kind of bounds : Bounds on the

minimal distance between two different roots, and bounds on some height of rational

roots. By height, we understand a measure of the number of bits necessary to

represent a point in projective space :

If a ∈ Z, we define the height H(a) = |a|. For Gaussian integers, we define :

H(a + bi) = H(a) + H(b). Then we have H(x ± y) ≤ H(x) + H(y) and H(xy) ≤
H(x)H(y). This is not the standard definition of height.

Let z be a point in Cn+1, considered as a point in projective space. We say that

z is rational if there is λ ∈ C such that λz ∈ Qn+1. By multiplying by the smallest

common multiple, we can assume without loss of generality that z has integer

coordinates, without common factor. Then we set the height H(z) = max |zj |.
If fj is a polynomial with rational coefficients, we define H(fj) as the height of

the vector of its coefficients. The height of the system f is the maximum of H(fj).

47

1. INTRODUCTION 48

This definition of height is not adequate to all the situations we will have to

face, and we will see definitions more suitable to several particular cases.

In Shub and Smale [12], and in chapter 2, the complexity of path-following was

bounded in terms of a condition number µ. It was proved by Shub and Smale in

[12] that the condition number

µ(f) = max
f(ζ)=0

‖f‖k
∥∥∥Df(x)−1diag(‖x‖2

di−1
√
di)
∥∥∥

2

verifies µ(f) = 1/ρ(f), where ρ(f) is the Maximum distance in Kostlan’s metric

between f and the discriminant variety Σ, along a fiber {f : f(ζi) = 0}. This implies

the inequality :

µ(f) ≤ 1

dproj(f,Σ)

A consequence of that is the existence of a finite complexity exponent d(Σ) and

of a geometric condition number µ(Σ) depending solely on d and n, such that :

Theorem 13. Let f ∈ Hd have gaussian integer coefficients. Then either

f ∈ Σ, either

µ(f) ≤ µ(Σ)H(f)d(Σ)

where we can set :

d(Σ) = n
∏

dj
∑

dj ≥
∑

ri

µ(Σ) =
√
D!d(Σ)

(
3n!n(d(Σ) + maxS(fi))(2

∑
dj)

n
∏

(dj − 1)
)d(Σ)

It is immediate from Theorem 13 that :

Corollary 2. There is a universal polynomial Mµ such that if µ(f) is finite,

then :

µ(f) < 2Mµ(n,D,
∏
di,logH(f),log dimHd)

Moreover, it is possible to obtain a result about conditioning of a whole path

in projective space. Indeed, it will be necessary to extend the path to a real line,

embedded in projective space. Generically, this line does not cut the discriminant

variety. If we denote by µ([f0, f1]) the condition number of the path [f0, f1], and

write ft = (1− t)f0 + tf1, then we will prove :

1. INTRODUCTION 49

Theorem 14. There is a proper variety Σ0 in Hd × Hd considered as a real

projective space, so that for ft 6∈ Σ0 the following estimate is true :

µ(ft) ≤ µ(Σ0)H(ft)
d(Σ0)

where we can set :

d(Σ0) = 2n
∏

(dj + 1)2(1 +
∑

dj)
2

µ(Σ0) =
√
D!d(Σ0)

×
(

32Dn!n(d(Σ0) + maxS(fi)− 1)
∏

(dj − 1)(−1 + 4
∑

dj)
2n+1

)d(Σ0)

Theorems 13 and 14 are obtained by estimating the height and degree of poly-

nomials defining Σ and Σ0.

Besides the estimate on the number of approximate Newton steps defined in

chapter 2, several other useful results can be obtained in terms of µ or log µ.

We will need the notations and conclusions of chapters 2 and 3. Since we will

be using mainly the pseudo-Newton operator, we recall some definitions :

β(f, x) =
1

‖x‖2

∥∥Df(x)†f(x)
∥∥

2

γ(f, x) = ‖x‖2 max
k

1,

(∥∥Df(x)†Dkf(x)
∥∥

2

k!

) 1
k−1


α(f, x) = β(f, x)γ(f, x)

Theorem 15. There is a machine over Z such that, given input (f ∈ Hd, x0 ∈
Cn+1), such that f is non-degenerate, α(f, x0) ≤ 1/16, and ζ is the zero associate

to x0, returns ζ if ζ is rational, and fails otherwise. Moreover, the execution time

of that program is bounded by a polynomial in
∏
di, n, D, logH(f), and dimHd.

The condition on α is the condition of the Theorem 6, Chapter 2. Together

with the construction of the approximate Newton operator (Theorem 12, Chapter

3), theorem 6, Chapter 2 can be used to generate a sequence xi quadratically

convergent to the nearest zero ζ :

d(xi, ζ) ≤ max{2−2i−1, 6ε}

where ε is the error of the approximate Newton operator. The cost of obtaining

xi was found to be a polynomial in logH(f), dimHd, logµ(f, ζ) and − log ε. We

will use this analysis to prove the theorem.

2. THE MACAULAY RESULTANT 50

Also, the following result on separation of roots comes naturally in terms of γ,

hence of µ :

Theorem 16. Let f ∈ Hd, and assume that x1, x2 are different roots of f .

Then dproj(x1, x2) ≥ sin tan−1 1/2γ(f, x1)

It follows that dproj(x1, x2) ≥ 1√
2D3/2µ(f)

≥ 1√
2D3/2µ(Σ)H(f)d(Σ)

.

2. The Macaulay resultant

Theorem 17 (Macaulay [7]). Let H be the space of all the systems f =

(f0, . . . , fn) of homogeneous polynomials of degree d = (d0, . . . , dn) in variables

x = (x0, . . . , xn). Let Σ be the locus in H of systems f having a non-trivial solution

x, x 6= 0, f(x) = 0. Then :

(1) The locus Σ is an algebraic variety, the zero set of a polynomial R of

degree
∑
i

∏
j 6=i di in the coefficients of f , given by :

R(f) = gcd detAj

where Aj are matrices to be defined, of size

(∑
dj

n

)
, and with

entries either coefficients of f , either zero.

(2) There is a submatrix Bj of Aj, such that :

R(f) =
detAj
detBj

(3) Poisson formula : If we fix some f1, . . . , fn non-singular, then R is given,

as a polynomial in the coefficients of f0 and up to a multiplicative constant,

by :

R(f0) =
∏

f1(ζ)=0,...,fn(ζ)=0

f0(ζ)

The polynomial R is called the resultant of the (undetermined) system f . It fol-

lows from Bezout theorem that the resultant has degree d1 . . . dn in the coefficients

of f0.

An important particular case is when f0 is linear, of the form : f0(x) = ux. In

that case, we write :

Ru(f1, . . . , fn) = R(f0, . . . , fn)

When f1, . . . fn are fixed, Ru is called the u-resultant of f1, . . . , fn and is a

polynomial in u0, . . . , un.

2. THE MACAULAY RESULTANT 51

In this section, we follow some of the ideas in Macaulay’s paper [7] in order to

construct matrices Aj and to sketch a proof of Theorem 17, but with a different

notation.

Idea of the Proof of Theorem 17 : For reasons that will become apparent

later, we set D = (
∑
dj)− n

Consider the condition :

(40) ∃x 6= 0 : f(x) = 0

It is equivalent to :

(41) ∃x 6= 0 : ∀g = (g0, . . . , gn), deg gj = D − dj ,
∑

fj(x)gj(x) = 0

Proof: (40)⇒ (41) is trivial. Assume x is given by (41). There is i with xi 6= 0.

Set gj = λjxi
D−dj . In other words :

∀λ,
∑

λjxi
D−djfj(x) = 0

Changing to coordinates λ′j = λjxi
D−dj , we obtain :

∀λ′,
∑

λ′jfj(x) = 0

It follows that fj(x) = 0.

Now we introduce some notation. Md, d ∈ N is the linear space generated by

all monomials of degree d in n+ 1 variables. ρd is the d-uple embedding :

ρd : Cn+1 → Md

x 7→ (xα0 , . . . , xαN)

Where N is the dimension of Md, and αi ranges through all possible monomials

of degree d.

N = dimMd =

(
n+ d

n

)
There is a natural isomorphism between the dual of Md and the linear space

of homogeneous polynomials of degree d :

ρd
∗ : f̃ 7→ f, f(x) = f̃ρd(x)

When d = (d0, . . . , dn), those maps can be extended as follows :

ρd : Cn+1 → Md0
× · · · ×Mdn

x 7→
(
ρd0(x), . . . , ρdn(x)

)

2. THE MACAULAY RESULTANT 52

ρd
∗ : (Md0

× · · · ×Mdn)
∗ → Hd(

f̃0, . . . , f̃n

)
7→

(
ρ∗d0

(f0), . . . , ρ∗dn(fn)
)

The latest one is still an isomorphism of linear spaces.

Multiplication of polynomial g0 of degree d′0 by a fixed polynomial f0 of degree

d0 corresponds to a linear mapping :

f̂0 : Md′0
∗ → Md0+d′0

∗

g̃0 7→ g̃0f̂0

Where

(g̃0f̂0)ρd0+d′0
(x) = g0(x)f0(x)

We write g̃0f̂0 in that order because g̃0 is a row vector (a covector).

Also, the sum of two polynomials of same degree D is associated to the sum in

MD
∗. So we can define the operator corresponding to :

g0, . . . , gn 7→ f0g0 + · · ·+ fngn

whenever the figi have the same degree ; in our case we will want degree D
(we will see why shortly). So we get a linear operator f̂ :

f̂ : MD−d0

∗ × · · · ×MD−dn
∗ → MD

∗

g̃0, . . . , g̃n 7→ g̃0f̂0 + · · ·+ g̃nf̂n

= (g̃0, . . . , g̃n)f̂

= g̃f̂

Here, f̂ can be seen as a matrix with more rows than columns. It defines a

bilinear mapping

g̃, x̃ 7→ g̃f̂ x̃

Indeed, we are speaking about a tri-linear map, if we consider the coefficients

of f as input.

We get the following conditions, clearly equivalent to conditions (40) and (41) :

(42) ∃x : ∀g̃, g̃f̂ρD(x) = 0

(43) ∃x : f̂ρD(x) = 0

There is a very convenient condition for (43) to be true.

2. THE MACAULAY RESULTANT 53

We define the subspaces M (i,j) of MD
∗ as follows : let let L(i, j) be the set

{j + 1, . . . , i − 1} or eventually the set {j + 1, . . . , n, 0, . . . , i − 1}. In particular,

L(i, 0) = {1, . . . , i− 1}.
We define M (i,j) as the subspace of MD of monomials of degree < dk in xk for

k in L(i, j), and of degree ≥ di in xi.

Because we set D = (
∑
dj)− n, We can write :

MD
∗ 'M (0,j) × · · · ×M (n,j)

There is a natural embedding of M (i,j) into MD−dI
∗ given by the division by

xi
di .

This extends to embeddings Ij of MD
∗ into MD−d0

∗ × . . .MD−dn
∗ :

MD
∗ → M (0,j) × . . . × M (n,j)

↘ ↓ . . . ↓
Ij MD−d0

∗ × . . . × MD−dn
∗

We denote by Aj = Ij f̂ the linear operator g̃ 7→ g̃Ij f̂ (notice again that g̃ is a

row vector, so we write g̃Ij for Ij applied to g̃). This definition gives us a square

matrix Aj for every j. detAj is a polynomial in the coefficients of f .

We can finally define the resultant of f as:

R = gcd(detAj)

where detAj are considered as polynomials in variables f̃ . The condition :

(44) R(f̃) = 0

is equivalent to conditions (40) to (43). It follows from the construction that

condition (43) implies condition (44).

We will use the Lemma :

Lemma 19. Let f1, . . . , fn be non-degenerate. Then the numerator R(f̃) is a

polynomial of degree d1d2 . . . dn in the coefficients of f0.

Lemma 19 is proved in [7], pages 10 and 11. The idea of the proof is to show

that what we call detAjdetA0
−1 contains no coefficient of f0 in the denominator.

(We will not perform that computation here). It follows that the product of all the

irreducible factors of detA0 containing coefficients of f0 divides R(f). Therefore,

the degree of R(f) in the coefficients of f0 is not less than the degree of detA0

2. THE MACAULAY RESULTANT 54

in those coefficients. But since R(f) divides detA0, those degrees are equal ; by

construction of A0, they are equal to dimM (0,0) = d1d2 . . . dn.

Assuming Lemma 19, when we specialize the coefficients of f1, . . . , fn, generi-

cally, we have the following expression, up to a multiplicative constant :

R(f) =
∏

f0(ζi)

where ζi ranges over all the roots of f1, . . . , fn. Indeed, it is clear that f0(ζi)

divides R(f0, f1, . . . , fn) as a polynomial in f̃0 (ζi is fixed, so f0(ζi) is a polynomial

of degree 1 in f̃0). Just note that f0(ζ) = 0 for ζ solution of f1, . . . , fn implies that

R(f) = 0. Hence according to Hilbert’s Nullstellensatz,
∏
f0(ζi) divides R(f)k, as

polynomials in f̃0, for some k. But since by hypothesis the roots ζi are disjoint,∏
f0(ζi) cannot have a multiple factor, so it has to divide R(f).

Moreover, by Bezout theorem, there are d1d2 . . . dn different roots ζi. Using

Lemma 19, the two polynomials have the same degree, so they are equal up to a

multiplicative constant. This implies item (3) of Theorem 17.

Using Item 3, the condition R(f̃) = 0 implies that there is ζ such that f(ζ) = 0.

If we add the degree in the coefficient of each fi, we conclude that the total

degree of each R(f) is
∑
i

∏
j 6=i dj . This will concludes the proof of Item 1 of

Theorem 17.

We still have to sketch the proof of item 2 of Theorem 17.

Proof of Item (2) of Theorem 17 : Let V ∗ = ∩j,k ker Ik − Ij ⊂M∗D. Let W ∗

be its orthogonal complement. Spaces V ∗ and W ∗ are subspaces of M∗D, and V ∗ is

spanned by all monomials xα with only one αi ≥ di. Therefore, it has dimension∑
i

∏
j 6=i dj .

Let Ak = Ikf̂ as above, and let Bk be the sub-matrix of Ak corresponding to

rows and columns in W ∗ and W , respectively. We want to prove that :

R(f) =
detAk
detBk

It is enough to show that detAk
detBk

is a polynomial. For in that case, R(f) and
detAk
detBk

have the same degree ; by definition of R, there is a polynomial b(f) such

that R(f)b(f) = detAk, and that polynomial is clearly of the same degree than

detBk. Therefore, b(f) = detBk, up to a multiplicative constant. This implies

Item 2.

3. GAP THEOREMS 55

We write :

Ak =

[
M P

N Bk

]
where M ∈ L(V, V), N ∈ L(W,V), P ∈ L(V,W) and of course Bk ∈ L(W,W).

We also define :

B̃k =

[
IV 0

0 Bk

]
We consider the operator p = AkB̃

−1
k in MD. Let ej be a basis (column) vector.

Then either ej ∈ V , either ej ∈W .

If ej ∈ V , then B̃−1
k ej = ej , and hence AkB̃

−1
k ej is a vector whose coordinates

are coefficients of f .

If ej ∈W , then B̃−1
k ej ∈W , and :

AkB̃
−1
k ej = ej +

[
P

0

]
Bk
−1ej

Therefore, p has the form :

p =

[
M P ′

0 IW

]
The matrix M is non-singular, since the coefficients in xi

di appear in the main

diagonal of M , and only there. Therefore, detM is a non-zero polynomial.

It follows that det p = detM det IW = detM , and therefore det p is a polyno-

mial in the coefficients of f . Moreover,

det p =
detAk

det B̃k
=

detAk
detBk

This concludes the sketch of the proof of Theorem 17.

3. Gap Theorems

Let f = (f1, . . . , fn) ∈ Hd be non-degenerate, with integer coefficients of abso-

lute value less than some integer H(f). Let D = max dj . Let x be a solution of f .

Assume |xi| and |xj | are non-zero. We will show that |xi||xj | is bounded away from

zero. The following is a version of Canny’s gap theorem [4].

Theorem 18 (Canny). In the conditions above,

|xi|
|xj |
≥

(
3H(f)

(∑
dj

n

))−(n+1)
∏
dj

3. GAP THEOREMS 56

This is also true when the coefficients of f are gaussian integers. We also want

to be able to decide when x is a rational solution (i.e., all the |xi||xj | are rational).

Almost the same proof of Canny’s theorem will lead to :

Theorem 19. Let f(x) = 0, and |xi|, xj ∈ N∗ have no common factor. Then :

|xi|, xj ≤

(
3H(f)

(∑
dj

n

))(n+1)
∏
dj

In order to prove the theorems, we will need some alternative definitions of

Height. First of all, assume that H is defined in a ring R. The main examples are

the integers and the Gaussian integers. Assume furthermore that :

H(1) = H(−1) = H(i) = H(−i) = 1

H(a+ b) ≤ H(a) +H(b)

H(ab) ≤ H(a)H(b)

Let K be the field of fractions of R, and let L = K[f1, . . . , fN] where the fi are

indeterminates (transcendental) over K. If a is an integer in L, a can be written

in the form a =
∑
aIf

I , where aI ∈ R and I are multi-indices. We define a height

B on the ring of integers of L :

B(
∑

aIf
I) =

∑
H(aI)

The following properties of B are obvious :

B(1) = B(−1) = B(i) = B(−i) = 1

B(g + h) ≤ B(g) +B(h)

B(gh) ≤ B(g)B(h)

We also want to extend this definition to integral polynomials in L[t], but in a

different way. We define :

C(td + pd−1t
d−1 + · · ·+ p0) = max

(
B(pi)

1
d−i

)

The following facts were proved in [4] for the particular case L = K = Q.

3. GAP THEOREMS 57

Lemma 20. Let p, q integral polynomials in L and let M be a n×n matrix with

integral entries in L.

C(pq) ≤ C(p) + C(q)

C(p/q) ≤ C(p) + 2C(q)

C(detM − tI) ≤ nmaxB(Mij)

Proof of lemma 20 :

Part 1 : We write :

p(t) = tm + pm−1t
m−1 + · · ·+ p0

q(t) = tn + qn−1t
n−1 + · · ·+ q0

r(t) = p(t)q(t) = tm+n + rm+n−1t
m+n−1 + · · ·+ t0

where :

ri =
∑

0≤j≤m,0≤i−j≤n

pjqi−j

By definition,

C(pq) = maxB
(∑

pjqi−j

) 1
n+m−i

C(pq) ≤ max
(∑

B(pj)B(qi−j)
) 1
n+m−i

So there is i such that :

C(pq)n+m−i ≤
∑

C(p)m−jC(q)n−i+j

On the other hand,

(C(p) + C(q))n+m−i =
∑

i−n≤j≤m

(
n+m− i
m− j

)
C(p)m−jC(q)n−i+j

Comparing term by term,

C(pq)n+m−i ≤ (C(p) + C(q))n+m−i

Hence

C(pq) ≤ C(p) + C(q)

3. GAP THEOREMS 58

Part 2 :

p(t) = tm + pm−1t
m−1 + · · ·+ p0

q(t) = tn + qn−1t
n−1 + · · ·+ q0

r(t) = p(t)/q(t) = tm−n + rm−n−1t
m−n−1 + · · ·+ t0

Since p and q are monic, the quotient r(t) can be computed by the following

recurrence :

rm−n = 1

rm−n−j−1 = pm−j−1 −
∑

0≤i≤j

rm−n−iqn+i−j−1

We have :

B(rm−n−j−1) ≤ B(pm−j−1) +
∑

0≤i≤j

B(rm−n−i)B(qn+i−j−1)

B(rm−n−j−1) ≤ C(p)j+1 +
∑

0≤i≤j

B(rm−n−i)C(q)j+1−i

We proceed by induction on i. Assume that B(rm−n−j) ≤ (C(p) + 2C(q))j for

all j ≤ i. This is trivially true for i = 0. By induction,

B(rm−n−j−1) ≤ C(p)j+1 +
∑

0≤i≤j

(C(p) + 2C(q))iC(q)j+1−i

≤ C(p)j+1 + C(q)
∑

0≤i≤j

(C(p) + 2C(q))iC(q)j−i

≤ C(p)j+1 + C(q)
∑

0≤i≤j

2i−j(C(p) + 2C(q))j

≤ C(p)j+1 + 2C(q)(C(p) + 2C(q))j

≤ C(p)(C(p) + 2C(q))j + 2C(q)(C(p) + 2C(q))j

≤ (C(p) + 2C(q))j+1

Thus,

C(r) ≤ C(p) + 2C(q)

Part 3 :

det(M − tI) = tn + an−1t
n−1 + · · ·+ a0

Coefficient ai is the sum of nn−i products of n− i entries of B-height less than

B(M), so we have : |ai| ≤ (nB(M))n−i.

3. GAP THEOREMS 59

C(det(M − tI)) ≤ nB(M)

Lemma 21. Let f = (f0, . . . , fn) be an indeterminate system of homogeneous

equations of degree d0, . . . , dn in n + 1 variables, with integer (resp. Gaussian

integer) coefficients. Let f̃ denote the coefficients of f , and let L = Q[f̃] (resp.

L = Q[i][f̃]).

Then :

B(R(f̃)) ≤

(
3

(∑
dj

n

))degR

If f1, . . . , fn are determinate, then :

B(R(f̃0)) ≤

(
3

(∑
dj

n

)
H(f1, . . . , fn)

)degR

As it was proved in Theorem 17, degR =
∑
i

∏
j 6=i dj . Theorems 18 and 19

follow directly from Lemma 21 :

Set f̃0 = uxi + xj . Then R(f̃0) is a polynomial in u, given by :

R(u) = r∏ diu
∏
di + · · ·+ r0

In particular, if xi and xj are rational, they divide r∏ di and r0, respectively.

This implies theorem 19.

In any case, |u| = | − xj
xi
| is either less than one, either

|u| ≤
|r0|+ · · ·+ |r∏ di−1|

|r∏ di |

≤ H(r0) + · · ·+H(r∏ di−1)

≤ B(R(u))

Hence,

|xi|
|xj |
≥

(
3H(f)

(∑
dj

n

))−∑
i

∏
j 6=i dj

proving Theorem 18

Proof of Lemma 21 :

Consider the system gv, depending on indeterminate v, defined by :

gi(x) = fi(x)− vxidi

4. WORST POSSIBLE CONDITIONING 60

Assume that some or all of the coefficients of f are determinate (the same proof

works if they are all undeterminate, by setting H(f) = 1). As in the section before,

set :

Ak = Ikĝ

and let Bk be the sub-matrix of Ak from Theorem 17.

The variable v appears in the main diagonal of Ak and Bk. Using Part 3 of

Lemma 20, we conclude that detAk and detBk verify, as polynomials in v :

C(detAk) ≤ H(f)

(∑
dj

n

)

C(detBk) ≤ H(f)

(∑
dj

n

)
Therefore, if we consider R(f) as a polynomial in v, Part 2 of Lemma 20

implies :

C(R(f)(v)) ≤ 3H(f)

(∑
dj

n

)
The degree in v of R(f) is

∑
i

∏
j 6=i dj . Therefore the resultant R(f)(0) of f

verifies :

B(R(f)(0)) ≤

(
3H(f)

(∑
dj

n

))degR

This proves Lemma 21.

4. Worst possible conditioning

Let f = (f1, . . . fn) ∈ Hd. If v ∈ Cn+1, v 6= 0, we define the following polyno-

mial from Hd into C :

discrv(f) = R(f1, . . . , fn,det

[
Df

v*

]
)

In the particular case v = e1 = (1, 0, . . . 0), discrv(f) = 0 is a necessary and

sufficient condition for the existence of ζ 6= 0, f(ζ) = 0, such that Df(ζ)|V (ζ) does

not have full rank. Therefore, we can write :

Σaff = Z(discre1(f))

In the projective and pseudo-Newton case, f is degenerate if and only if there

is ζ 6= 0, f(ζ) = 0, such that Df(ζ) has rank < n. Indeed, Df(ζ)ζ = 0, so Df(ζ)

4. WORST POSSIBLE CONDITIONING 61

has rank < n if and only if

[
Df(ζ)

ζ*

]
has rank < n + 1. This is equivalent, in

other notation, to say that Df(ζ)|V (ζ) has rank < n.

Thus,

Σ = Σproj = Σpseu = {f : ∃ζ 6= 0, f(ζ) = 0, rank(Df(ζ)) < n}

Lemma 22. Let N >
∏
di, and let V = {v1, v2, . . . vn} be a family of non-zero

vectors of Cn+1, not two of them colinear. Let discr be the ideal generated by the

polynomials discrv while v ∈ V . Then Σ = Z(discr).

Proof of Lemma 22 : If f ∈ Σ, then by definition there is ζ 6= 0 such that

f(ζ) = 0 and rankDf(ζ) < n. It follows that for any v ∈ V ,

[
Df(ζ)

v*

]
has rank

< n+ 1, hence discrv(f) = 0 for all v ∈ V .

Reciprocally, let discrv(f) = 0 for all v ∈ V . Then for all v ∈ V , there is ζv 6= 0

such that f(ζv) = 0 and rank

[
Df(ζv)

v*

]
< n+ 1.

If there are infinitely many zeros of f , then f ∈ Σ and we are done. Assume

there are only finitely many zeros. By Bezout’s theorem, there are at most
∏
di

different zeros of f .

This implies that at least two of the ζv should be the same. Call this point

ζ. There are v, w ∈ V such that : Df(ζ)v = Df(ζ)w = 0, v and w linearly

independent. Therefore, rankDf(ζ) < n, hence f ∈ Σ. This proves Lemma 22.

Let us fix V = {(1, v1, . . . , vn), vi ∈ N, 0 ≤ vi ≤ n}. Then V contains more

than
∏
di non-colinear elements.

Let ri be the degree of discrv in the coefficients of fi. Then :

Lemma 23.

ri = degfi(discrv) =
∏

dj + (−n+
∑

dj)
∏
j 6=i

dj

B(discrv) ≤

(
3n!n

(
−n+ 2

∑
dj

n

)∏
(dj − 1)

)∑
ri

Indeed, the degree in ζ of det

[
Df

v*

]
is−n+

∑
di. Each coefficient of this poly-

nomial is a product of a coefficient of each fi and a numeric value not bigger than

n!n
∏

(dj − 1). It follows from Theorem 17 that ri =
∏
dj + (−n+

∑
dj)
∏
j 6=i dj .

4. WORST POSSIBLE CONDITIONING 62

Consider now the polynomial R

(
f1, . . . , fn,det

[
Dg

v*

])
. By Lemma 21,

B(R(f1, . . . , fn,det

[
Dg

v*

]
)) ≤

(
3

(
−n+ 2

∑
dj

n

)
n!n

∏
(dj − 1)

)∑
ri

Since specialization equating variables do not increase B, we obtain :

B(R(f1, . . . , fn,det

[
Df

v*

]
)) ≤

(
3

(
−n+ 2

∑
dj

n

)
n!n

∏
(dj − 1)

)∑
ri

Proof of Theorem 13 :

Consider the mapping :

σ : Hd → CN

f = f1f2 . . . fn 7→ . . . (f I = f I11 f I22 . . . f Inn) . . . , |Ij | = rj

where N =
∏(ri + S(fi)− 1

ri

)
. N ≤ (max ri + maxS(fi)− 1)

∑
ri

This mapping associates to each system f , a vector whose coordinates are the

values of all the monomials of degree ri in fi. Since according to Lemma 23 the

discriminant discrv has degree ri in fi, we obtain :

discrv(f) = σ∗(discrv)σ(f)

Above, the pull-forward σ∗ associates to each polynomial of degree ri in each

fi, the (row) vector of its coefficients. Using that |a| ≤ H(a), ‖σ∗(discrv)‖1 ≤
B(discrv).

Lemma 24. Let p, q ∈ CN , ptq 6= 0. Then dproj(p
⊥, q) ≥ 1

‖p‖2‖q‖2
≥ 1
‖p‖1‖q‖2

Lemma 24 follows from the fact that the nearest point to q in p⊥ is its or-

thogonal projection q − pp∗q
‖p‖2

2 . Therefore, the distance dproj(q, p
⊥) is not less than

p∗q
‖p‖2‖q‖2

Lemma 24 gives us a bound on the distance between σ(f) and σ(discrv)
⊥ :

dproj(σ(f), σ(discrv)
⊥) ≥

≥

(
3n!n

(
−n+ 2

∑
dj

n

)∏
(dj − 1)

)−∑
ri (√

N
∏

(H(fi)
ri)
)−1

4. WORST POSSIBLE CONDITIONING 63

Now we consider a path γ : [0, 1] → Hd, with ‖γ(t)‖k = c and ‖γ′(t)‖k = cv.

Then dproj(γ(0), γ(1)) ≤ v. We compute :

‖(σ ◦ γ)(t)‖2 ≥
√∑

I

(σI ◦ γ)(t)2

≥
∏
i

(max
j
|γi(t)j |ri−1)‖γ(t)‖2

≥
∏
i

(max
j
|γi(t)j |ri−1)‖γ(t)‖k

‖γ′(t)‖2 ≤ ‖γ
′(t)‖k

√
D!

‖(σ ◦ γ)′(t)‖2 ≤ cv
√
D!
√
N max

i
ri
∏
i

max
j
|γi(t)J |ri−1

Thus,
‖(σ ◦ γ)′(t)‖2
‖(σ ◦ γ)(t)‖2

≤ v
√
D!
√
N max

i
ri

And hence :

‖(σ ◦ γ)(1)− (σ ◦ γ)(0)‖2
‖(σ ◦ γ)(0)‖2

≤ v
√
D!
√
N max

i
ri

Assume furthermore that γ(0) = f and that discrv(γ(1)) = 0. Then :

‖(σ ◦ γ)(1)− (σ ◦ γ)(0)‖2
‖(σ ◦ γ)(0)‖2

≤
√
N
√
D! max ridproj(f, Z(discrv))

Introducing Lemma 24, we obtain :

dproj(f, Z(discrv)) ≥

≥
(√

D!N max ri

)−1
(

3

(
−n+ 2

∑
di

n

)
n!n

∏
(dj − 1)H(f)

)−∑
ri

Where N ≤ (max ri + maxS(fi)− 1)
∑
ri .

Let f 6∈ Σ. Then there is v in V such that discrv(f) 6= 0. The equation above

bounds the distance of f to the variety Z(discrv), that contains Σ.

Therefore, we can set the bound :

d(Σ) = n
∏

dj
∑

dj ≥
∑

ri

This exponent is clearly less than
∑
ri. We also can set :

µ(Σ) =
√
D!d(Σ)

(
3n!n(d(Σ) + maxS(fi))(2

∑
dj)

n
∏

(dj − 1)
)d

(Σ)

and Theorem 13 is proved.

4. WORST POSSIBLE CONDITIONING 64

Proof of Theorem 14 :

Let us suppose that there are reals t̃1, t̃2 such that t̃1f + t̃2g ∈ Σ. Then in

particular, there is ζ such that :

t̃1f(ζ) + t̃2g(ζ) = 0

and

det

[
∂
∂ζ t̃1f(ζ) + t̃2g(ζ)

(1 , 0 . . . 0)

]
= 0

Moreover, we can equate one of the t̃i to one of the ζi, say t1 = ζn+1. Then,

we obtain a system of the form :

(45)

Re (t1f(ζ) + t2g(ζ)) = 0

Im (t1f(ζ) + t2g(ζ)) = 0

Re

(
det

[
∂
∂ζ (t1f(ζ) + t2g(ζ))

(1 , 0 . . . 0)

])
= 0

Im

(
det

[
∂
∂ζ (t1f(ζ) + t2g(ζ))

(1 , 0 . . . 0)

])
= 0

If we have in mind that t1 and t2 are real variables, it is clear that system

(45) is a system of 2n + 2 real homogeneous equations in 2n + 2 real variables

(t1, t2,Re(ζ1), Im(ζ1), . . . , Im(ζn)).

If there are t̃1 and t̃2 such that t̃1f + t̃2g ∈ Σ, then system (45) has a solution,

and therefore its resultant vanishes. The converse is not true, since there may exist

a complex solution that is not a real solution.

Let us call R(f, g) the resultant of system (45). Then, in the realization of

Hd ×Hd, we define the variety :

Σ0 = {f, g : R(f, g) = 0}

This variety is proper : if we set f = g, there is f such that there is no real

solution for system (45), since any real solution would imply the existence of a

complex solution for f(ζ) = 0,det

[
Df(ζ)

e1
*

]
= 0, and not all f are degenerate.

Let ri be the degree of R in the coefficients of fi and gi. Then :

ri = 2
∏

(dj + 1)
∏
j 6=i

(dj + 1)(
∑

dj)
2 + 2

∏
(dj + 1)2

∑
dj

Therefore, ∑
ri ≤ 2n

∏
(dj + 1)2(1 +

∑
dj)

2

5. DIOPHANTINE DECISION PROBLEM 65

So we set :

d(Σ0) = 2n
∏

(dj + 1)2(1 +
∑

dj)
2

When we realize a complex polynomial of degree d, we obtain two polynomials

of height at most 2d. Therefore, the height of system (45) is bounded by :

2Dn!
∏

(dj − 1)

Therefore, Lemma 21 implies :

B(R) ≤

(
3

(
−1 + 4

∑
dj

n

)
2Dn!n

∏
(dj − 1)

)d(Σ0)

Thus, as in the proof of Theorem 13, we can bound µ(ft) by
√
D!NB(R)d(Σ0),

and set :

µ(Σ0) =
√
D!d(Σ0)×

×
(

32Dn!n(d(Σ0) + maxS(fi)− 1)
∏

(dj − 1)(−1 + 4
∑

dj)
2n+1

)d(Σ0)

And theorem 14 is proved.

5. Diophantine decision problem

In this section, we are concerned about the following problem : Let 0 ≤ x ≤ 1

be a real number, such that 2−kx is an integer. Let H be an integer, and let

ε < 1/2H2. We want to decide if there is a rational p
q in [x − ε, x + ε], such that

q ≤ H. In the case it exists, we want to be able to find it. Consider that ε = 2−k
′

for some k′ ≥ k.

If a solution exists, it is unique. Indeed, let p
q and p′

q′ be different solutions.

Then |pq −
p′

q′ | = |
pq′−p′q
qq′ | ≥

1
H2 ≥ 2ε, a contradiction.

Lemma 25. There is a program that solves this problem within polynomial time

on log k′

The cases x− ε ≤ 0 and x+ ε ≥ 1 are trivial, and can be discarded. Thus, we

assume that x ∈ [ε, 1− ε].
Geometrically, we consider the (q, p) plane. Let Q be the square 0 < q, p ≤ H.

The set of rationals 1 ≤ q, p ≤ 1 is represented by the lattice of points of Q with

integer coordinates.

5. DIOPHANTINE DECISION PROBLEM 66

Let ∆ be the line of equation p = qx. Let ∆1 and ∆2 be the lines of equation

p = (q + ε)x and p = (q − ε)x, respectively. ∆ corresponds to the real number x,

and the condition x− ε ≤ p
q ≤ x+ ε is true if and only if (p, q) belongs to the cone

C limited by ∆1 and ∆2.

Thus, we want to find a lattice point (p, q) in Q ∩ C. In order to do that, we

use the continued fraction expansion of x.

Consider the recurrence :

r0 = x

ri+1 =
1

ri
− b 1

ri
c

We also write :

σi+1 = b 1

ri
c

Notice that when r0 is rational, H(ri+1) ≤ H(r0), so the ri can be computed

with rational arithmetics in a bounded number of bits.

We can also define the approximants pi, qi of x by the recurrence :

p0 = 0, q0 = 1, p1 = 1, q1 = 1

pi+1 = pi−1 + σipi

qi+1 = qi−1 + σiqi

It is a fact that :
pi
qi

=
1

σ1 + 1
... 1
σi−1

The pairs pi, qi have no common denominator, and in the case x is rational

(our case) x is attained in a finite number of steps. Indeed, from the recurrence,

we easily obtain that pi+2 ≥ 2pi and qi+2 ≥ 2qi, so pi/qi = x for some i ≤ 2k.

pi/qi are known to be the best possible approximations of x with a given height :

Theorem 20 (181 in [6]). If n > 1, 0 < q < qn, and p/q 6= pn/qn, then∣∣∣∣pnqn − x
∣∣∣∣ < ∣∣∣∣pq − x

∣∣∣∣
That implies that if (qi, pi) does not belong to C, then there is no lattice point in

C at the left of qi.

For odd i’s, qi, pi is below ∆. For even i’s, qi, pi is above ∆.

Now we come to the algorithm : we compute qi, pi, until qi, pi is in C or

qi−2, pi−2 is not in Q.

If qi, pi is in Q, then we are done (output pi, qi).

6. PROOF OF THEOREM ?? 67

If qi−2, pi−2 is not in Q, then there is no rational solution of bounded height,

and we are also done (output NO SOLUTION).

There is a third case. There might be lattice points in C ∩ Q along segments

((qi−2, pi−2)(qi, pi)) or ((qi−1, pi−1)(qi+1, pi+1)).

Assume for instance that i is even, and we want to check for lattice points in

Q ∩ C along ((qi−2, pi−2)(qi, pi)). Then we write the parametric equation :

(q, p) = (qi−2, pi−2) + λ(qi−1, pi−1)

We combine it with the equation of ∆2, and obtain :

λ =
qi−2(x− ε)− pi−2

pi−1 − qi−1(x− ε)
The natural candidate to a solution on this side is the point :

(q, p) = (qi−2, pi−2) + dλe(qi−1, pi−1)

If this fail, we have to look for the point :

(q, p) = (qi−1, pi−1) + dλ′e(qi, pi)

Where

λ′ =
qi−1(x+ ε)− pi−1

pi − qi(x+ ε)

If this one also fails to be in Q∩C, there is no rational solution to our problem.

The other case (i odd) is analogous.

Since all the computations can be performed by rational arithmetics in precision

k′, and there are at most O(log k′) continued fraction iterations, the total time is

polynomial in log k′.

6. Proof of theorem 15

In order to deal with points in the projective space, the usual concept of height

may be unadequate; instead we define the height of ratios:

Hr(x0 : . . . xn) = max
xj 6=0

H(
xi
xj

)

where the height of a rational is given by H(p/q) = max(|p|, q), whenever p and q

have no common divisor.

Theorem 19 can be restated more conveniently in terms of Hr :

Theorem 21. Let f ∈ Hd be non-degenerate, f(ζ) = 0, and let ζ be rational.

Then Hr(x) ≤
∏
di
−1(3nH(f) dimHd)

∏
di .

Also, there is a ”gap” between different rational points of a bounded height :

7. SEPARATION OF ROOTS 68

Lemma 26. Let x,x′ be rational points of Cn+1 (this means that x, x′ ∈ Qn+1),

such that dproj(x, x
′) 6= 0. Let H = max(Hr(x), Hr(x

′)). Then dproj(x, x
′) ≥

1
H2(n+1)

Proof : assume without loss of generality that x0 = 1, |xj | ≤ 1 for all j, x′i = 1

for some i, and |x′j | ≤ 1.

d(
x

‖x‖
,
x′

‖x′‖
) ≥ 1√

n+ 1
d(x, x′) ≥ 1

H2
√
n+ 1

since we are projecting from an hypercube into its inscribed hypersphere. Now

we project into the hyperplane passing by x/‖x‖ perpendicular to x′. In the worst

case :

dproj(x, x
′) ≥ 1√

n+ 1
d(

x

‖x‖
,
x′

‖x′‖
) ≥ 1

H2(n+ 1)

Now, the Quadratic Convergence Theorem provides us a point x ∈ Cn+1 and

a neighborhood of radius δ < 1
2H2(n+1) over x, containing a root ζ. Here, we set

H =
∏
di(3nH(f) dimHd)

∏
di , so that if ζ is rational, it belongs to a ball of radius

δ over x.

Thus, we need about 1 + log(− log δ) iterations of Nε, ε = δ2. We need also

that εγ < 1/40, but γ can be bounded in terms of µ by using theorem 13. Thus

we obtain a polynomial time bound in
∏
di, n, D, logH(f), dimHd and logµ(ζ).

However, since log µ(ζ) is bounded by the polynomial in Corollary 2, we obtain a

polynomial time bound in
∏
di, n, D, logH(f) and dimHd alone.

Without loss of generality, we assume x0 = 1 and 0 ≤ xj ≤ 1. We have

|xi− ζi| ≤ 1
2H2 , so we can use the diophantine approximation algorithm to find the

ζi’s , if they exist. This can be done in time n times a polynomial in logH. This

proves theorem 15.

7. Separation of roots

We prove theorem 16 as follows : Let h = x2 − x1. By scaling x2, assume first

that x2 ∈ x1 + kerDf(x1)⊥ = x1 + x⊥1 . We have :

f(x1) = 0

f(x2) = 0 = f(x1) +Df(x1)h+
D2f(x1)h2

2
+ · · ·+ Dkf(x1)hk

k!
+ . . .

So :

−Df(x1)h =
∑
k≥2

1

k!
Dkf(x1)hk

7. SEPARATION OF ROOTS 69

Multiplying both terms by Df(x1)†, and using that h ∈ kerDf(x1)⊥, we ob-

tain :

h =
∑
k≥2

1

k!
Df(x1)†Dkf(x1)hk

Passing to the norms, and dividing by ‖h‖ :

1 ≤
∑
k≥2

1

k!
‖Df(x1)†Dkf(x1)‖‖h‖k−1 ≤

∑
k≥2

1

k!

γ(f, x1)k−1‖h‖k−1

‖x1‖k−1

This implies :

1 ≤ 1

1− γ(f, x1)‖x2−x1‖
‖x1‖

− 1

We get :

γ(f, x1)
‖x2 − x1‖
‖x1‖

≥ 1

2

‖x2 − x1‖
‖x1‖

≥ 1

2γ(f, x1)

Now, assuming again x2 ∈ x1 + x⊥1 , we have :

dp(x1, x2) = sin tan−1 ‖x2 − x1‖
‖x1‖

�

However, we can say nothing about the height of a root x solely in terms of

γ, since γ is rotation-invariant : any root x can be mapped anywhere in projective

space, without changing γ.

CHAPTER 5

Global complexity of solving systems of

polynomials

A global algorithm for solving systems of polynomial equations is

constructed. Main Theorem is proved.

1. Introduction

A Theorem on the global complexity of solving systems of polynomial equa-

tions with integer coefficients was stated in Chapter 1. Here, we will construct an

algorithm corresponding to the machine in Main Theorem , and prove the Theorem.

We will use the analysis of the Pseudo-Newton iteration from Chapter 2, to-

gether with the construction of a Pseudo-Newton operator Pseudo(f, x) in Chapter

3. Chapter 4 will provide us with a worst case estimate of the condition number of

f .

Basically, we have to answer here to the following questions : How to get

a starting system, how to certify an approximate solution, and how to design a

global algorithm that will succeed generically.

Since the worst case bounds on µ are too pessimistic, the algorithm will rather

guess an upper bound for µ, and attempt to solve the system. If this fails, the

algorithm will increase the upper bound, and try again. This approach leads to

algorithms that are also tractable in practice.

2. How to obtain starting points.

Obtaining starting points for a homotopy path is easy. Obtaining good starting

points is, at this time, an open problem (see [14]). We give only the easy and less

efficient way :

Let gk(x) = xk − 1 = (x − ζ0) . . . (x − ζk−1), where ζ is a k-th root of unity.

Then the system f , fi(x) = gdi(x0, xi) is clearly a non-degenerate starting point.

70

3. HOW TO BOUND µ 71

Lemma 27. There is an algorithm STARTPOINT , returning a system of poly-

nomials f = STARTPOINT (n, d) ∈ Hd, with height 1, together with an approximate

solution X of f .

We will indicate the proof of the Lemma. We have to bound the cost of ob-

taining a d-th root of unity.

Consider the polynomial in one variable : g(x) = xd − 1. Let ζ be a d-th root

of unity, g(ζ) = 0. g′(ζ) = dζd−1 = d
ζ .

µaff(g, ζ) ≤ ‖g‖k

∥∥∥∥ζd√d|ζ|d−1

∥∥∥∥
2

=

√
2

d

We use Lemma 14 of chapter 2. According to that Lemma, if :

‖(1, x)− (1, ζ)‖2
‖(1, ζ)‖2

γ(ζ) ≤ ū

then :

α(f, x) ≤ ū

ψ(ū)2

Using that γ(f, ζ) ≤ d3/2

2 µ(f, ζ), we obtain that :

Lemma 28. If |x− ζ| ≤ 2ū
d , then α(f, x) ≤ ū

ψ(ū)2

That means that if we are able to obtain an approximation good enough of

ζ, we obtain an approximate zero associated to ζ. We can compute ζ to a higher

precision by Affine Newton iteration, and then compute all the ζi to obtain the

approximate solution of f .

In order to obtain a good approximation of ζ, we can write :

ζ = 1 + ai+
1

2
(ai)2 + · · ·+ 1

k!
(ai)k + Ek

We will approximate ζ by truncating the series. Suppose we want to do that

with error δ, we need to choose k such that |Ek| < δ.

Since a = 2π
d and the cases d = 1 and d = 2 are trivial, we can assume that

a < 3. Then for k > 6, ak/k! ≤ 26−k. This allows us to compute the approximation

of ζ using a number of terms logarithmic in δ−1.

Therefore, it is easy to see that a 2δ approximation of ζ can be obtained within

time polynomial in − log δ. Setting δ < 1
16d , we get α(f, x) < 1/8. According to

Theorem 1, x is an approximate zero associated to ζ.

3. How to bound µ

In this section, we give procedures to certify that a given list of points is an

approximate zero of a system of polynomial equations.

3. HOW TO BOUND µ 72

Lemma 29. There is a procedure to compute a bound M (finite or not) such

that :

µ(f, x) ≤M ≤ 4
√
nµ(f, x)

That procedure is polynomial time in n, D,
∏
di, S(f), logH(f).

The following algorithm returns the bound mu(f, x) for µ(f, x), such that,

ignoring the numeric error, 2µ(f, x) ≤ mu(f, x) ≤ 2
√
nµ(f, x). Of course, numerical

error will occur, and that is the reason Lemma 29 is weaker than the bound above.

Let us first state the algorithm, and then proceed with the error analysis.

ALGORITHM z′′ ← mu (f, x)

1 Compute A =
[
∂fi
∂xj

di
−1/2‖x‖2−di+1

]
2 Make At = Q

[
R

0

]
3 Compute c = Rt

−1
I

4 Set mu = 2‖f‖k‖c‖f

Proof of correctness : Assume there is no numerical error.

µ(f, x) = ‖f‖k
∥∥∥Df†diag(

√
di‖x‖2

di−1
)
∥∥∥

2

= ‖f‖k

∥∥∥∥∥∥Q
[
Rt

0

]−1
∥∥∥∥∥∥

2

= ‖f‖k
∥∥∥Rt−1

∥∥∥
2

We use the fact : ∥∥∥Rt−1
∥∥∥

2
≤
∥∥∥Rt−1

∥∥∥
f
≤
√
n
∥∥∥Rt−1

∥∥∥
2

It follows that :

2µ(f, x) ≤ 2mu(f, x) = 2‖f‖k
∥∥∥Rt−1

∥∥∥
f
≤ 2
√
nµ(f, x)

First order error analysis :

Let q = 4D+S(f)+maxS(fi)+2.25n3+6.25n2+2n+1 . LetMi(f, x) = Rt−1
ei,

then ‖Mi(f, x)‖2 =
∥∥A†bi∥∥2

.

Line 1 : A is computed with forward error bounded by :

‖δ1A‖max ≤ ‖f‖kεm(2D + maxS(fi) + 2n+ 1)

3. HOW TO BOUND µ 73

Line 2 : This line introduces some backward error in A :

‖δqrA‖2 ≤ ‖A‖2εm(2.25n2 + 5.25n)

‖δqrA‖max ≤ n‖A‖maxεm(2.25n2 + 5.25n)

Since ‖A‖max ≤ ‖f‖k,

‖δqrA‖max ≤ ‖f‖kεm(2.25n2 + 5.25n)

Line 3 : This line introduces backward error in R, hence in A :

‖δRA‖max ≤ ‖δ2R‖max ≤ ‖R‖maxεm(n) ≤ n‖A‖maxεm(n)

We can write :

‖δ2A‖max ≤ ‖f‖kεm(n2)

Therefore :

‖δA‖max ≤ ‖f‖kεm(2D + maxS(fi) + 2.25n3 + 6.25n2 + 2n+ 1)

≤ ‖f‖kεm(q − S(f)− 2D)

Now,

‖DMi(f, x)‖max,2 ≤
∥∥A†ei∥∥2

∥∥A†∥∥
2

Line 4 introduces forward error bounded by ‖f‖kεm(S(f) + 2D), therefore, in

first order analysis,

‖δmu‖2 ≤ µ
2εm(q)

A preliminary Lemma : In order to give some rigorous bounds for µ, we shall

need the following Lemma :

Lemma 30. Let C, δC be matrices, so that ‖δC‖max ≤ ‖f‖kεm(q).

Let 2n‖f‖k
∥∥C†∥∥

2
εm(q) < 1. Then :

1

2

∥∥C†∥∥
2
≤
∥∥(C + δC)†

∥∥
2
≤ 2
∥∥C†∥∥

2

Proof :

‖δC‖2 ≤ n‖δC‖max ≤ n‖f‖kεm(q) ≤ 1

2‖C†‖2
Therefore,

∥∥(C + δC)†
∥∥

2
verifies :

1

2

∥∥C†∥∥
2
≤
∥∥(C + δC)†

∥∥
2
≤ 2
∥∥C†∥∥

2

Proof of Lemma 29 :

4. MORE ESTIMATES ON µ 74

Step 1 : Choose εm so that :

(46) 4n3/2µ(Σ)H(f)d(Σ)εm(q) < 1

where µ(Σ) and d(Σ) are defined in Theorem 13 of Chapter 4. It is clear

from the corollary of the same theorem that the number of bits of precision we are

requiring is bounded by a polynomial in n, D,
∏
di, dimHd and also logH(f).

Step 2 : Compute mu(f, x). In case a division by zero occurs, or in case mu(f,x)
2
√
n

>

µ(Σ)H(f)d(Σ), then return ∞.

Indeed, assume that µ is finite. ‖δA‖max ≤ ‖f‖kεm(q), so that :

‖f‖k‖A+ δA‖f ≤ ‖f‖k‖A+ δA‖2
√
n ≤ 2‖f‖k‖A‖2

√
n ≤ 2µ

√
n

That implies that :

µ ≥ µ(Σ)H(f)d(Σ)

contradicting Theorem 13 of Chapter 4.

Step 3 : Since mu(f,x)
2
√
n
≤ µ(Σ)H(f)d(Σ), we can use equation (46) to obtain :

2n‖f‖k
∥∥(A+ δA)†

∥∥
f
εm(q) < 1

Hence,

2n‖f‖k
∥∥(A+ δA)†

∥∥
2
εm(q) < 1

Therefore, Lemma 30 implies :

1

2

∥∥A†∥∥
2
≤
∥∥(A+ δA)†

∥∥
2
≤ 2
∥∥A†∥∥

2

µ ≤ 2‖f‖k
∥∥(A+ δA)†

∥∥
2
≤ 4µ

µ ≤ 2‖f‖k
∥∥(A+ δA)†

∥∥
f
≤ 4
√
nµ

Thus,

µ ≤ mu ≤ 4
√
nµ

4. More estimates on µ

Lemma 31. Let f ∈ Hd, and assume that x, ζ ∈ Cn+1 are non-zero. Let

u = dproj(x, ζ)γpseu(f, ζ). Then :

µpseu(f, x) ≤ (1− u)2

ψ(u)
µpseu(f, ζ)

5. HOW TO BOUND η 75

Proof of Lemma 31 : Let ζ be scaled in such a way that dproj(x, ζ) =
‖x−ζ‖2
‖ζ‖2

.

We proceed as in Lemma 2 of Chapter 2, and break µ(f, x) in :

µ(f, x) ≤‖f‖k
∥∥∥Df(x)|V (x)

−1
Df(x)|V (ζ)

∥∥∥
2∥∥∥Df(x)|V (ζ)

−1
Df(ζ)|V (ζ)

∥∥∥
2∥∥∥Df(ζ)|V (ζ)

−1
diag‖ζ‖2

di
√
di

∥∥∥
2∥∥∥∥∥diag

(
‖x‖2
‖ζ‖2

)di∥∥∥∥∥
2

Using the estimates of Part 1 and Part 2 of the proof of Lemma 2 Chapter 2,

and using also the fact that ‖x‖2 ≤ ‖ζ‖2, we obtain :

µ(f, x) ≤ (1− u)2

ψ(u)
µ(f, x)

This proves the Lemma 31.

In particular, if µ(f, ζ) ≤ µ̄, and if 4dproj(x, ζ)γpseu(f, ζ) < 1
2 , it is possible

to conclude that µ(f, x) ≤ 2µ̄. This kind of estimate allows to bound µ in a

neighborhood of the path we are following. It allows us to bound the conditioning of

approximate zeros, and therefore to set the machine precision necessary for Newton

iteration, as it is required in Chapter 3.

5. How to bound η

Let q = 4D+S(f)+maxS(fi)+2.25n3 +6.25n2 +2n+1. Computing a bound

for η is straight-forward :

ALGORITHM eta ← eta (f, x)

1 Compute n1 = ‖f‖k
2 Compute n2 = ‖x‖2
3 Set bi = fi(x)

(
√
din1n2)

4 Set eta= (1 + 1
8)‖b‖2

Forward error analysis :

Line 1 : The forward error is |δn1| ≤ ‖f‖kεm(S(f) + 2D)

Line 2 : We have |δn2| ≤ ‖x‖2εm(2n+ 2)

Line 3 : The error is bounded by :

|δbi| ≤
1√
di
εm(S(f) + maxS(fi) + 3D + 2n+ 2)

6. HOW TO CERTIFY AN APPROXIMATE SOLUTION. 76

Line 4 : We get :

|δeta| ≤ εm(S(f) + maxS(fi) + 3D + 4n+ 1) ≤ εm(q)

And therefore,

Lemma 32. In the conditions above, η ≤ eta ≤ 2η.

6. How to certify an approximate solution.

We already proved the following facts :

Lemma 33. Assume the following condition is verified :

(47) 4n3/2µ(Σ)H(f)d(Σ)εm(q) < 1.

Then :

µ(f, x) < mu(f, x) < 4
√
nµ(f, x)

η(f, x) < eta(f, x) < 2η(f, x)

β(f, x) < mu(f, x)eta(f, x)

γ(f, x) < D3/2mu(f, x)

α(f, x) <
D3/2

2
mu(f, x)2eta(f, x)

Let f and x be given. Let ζ be the zero associated to x. The following algorithm

will return an approximate zero of f , or fail. If it fails, one of the following conditions

will be false :

(48) dproj(x, ζ) ≤ ū

γ̄

(49) µ(f, ζ) ≤ µ̄

Constant µ̄ was defined in Theorem 9 of Chapter 2. Constant γ̄ is defined in

Corollary 1, Chapter 2.

If conditions (48) and (49) are true, then by Lemma 31, µ(f, x) ≤ 2µ̄. We will

prove that in that case, the output of the algorithm is an approximate zero of f ,

associated to ζ.

ALGORITHM y ← Zero (f, x, µ̄)

7. HOW TO SOLVE A GENERIC SYSTEM. 77

1 Let k, δ ← d2 + log log ne, d 1
200ne

2 Let εm be such that Pseudo has precision δ

and condition (47) is true.

3 Let y ←Pseudo k(f, x)

4 Let a← D3/2

2 mu(f, x) eta(f, x)

5 If a ≥ 1
8 Fail.

6 Return y.

It is clear that α(f, y) < a < 32nα(f, y). So if the algorithm succeeds, y is

certainly an approximate zero of f .

Now assume conditions (48) and (49). Then α(f, y) < min(2−2k−1, δ)α(f, x) ≤
1

32nα(f, x).

Therefore, a ≤ α(f, x) ≤ 2ū < 1/8, and the algorithm shall succeed. More-

over, the result y is obtained from x by an approximate Newton iteration, so it is

associated to the same zero ray ζ.

Let we note Y =Zero(X) for the application of Zero to a list of points X. The

next algorithm if it succeeds, returns an approximate solution of f .

If it is given an approximate solution of f as input, and conditions (48) and

(49) are true for every point in X, it succeeds.

ALGORITHM Z ← Solution (f, X, µ̄)

1 If Length(X) 6=
∏
di then FAIL.

2 Let Y ←Zero(f,X, µ̄).

3 Let Z =Pseudok(f, Y), where k, δ and ε are chosen

so that each point of Z is at distance less than 1
4
√

2D3/2µ̄

of its associated zero.

4 If two of the Zi are at distance less than 1
2
√

2D3/2µ̄
, then FAIL.

5 Return Z.

Lines 3 and 4 check that there are not two elements of X with the same asso-

ciated zero. This follows from Theorem 6 of Chapter 2 and Theorem 16 of Chapter

4. Line 1 checks that there is one Xi for each zero of f .

7. How to solve a generic system.

Given a path [f0, f1], it is easy to produce equally spaced systems fti in Hd.
We just set :

ti =
1

2
+

tan θi
tan θmax

7. HOW TO SOLVE A GENERIC SYSTEM. 78

where :

2 sin θmax =

∥∥∥∥ f0

‖f0‖k
− f1

‖f1‖k

∥∥∥∥
k

and θi =
(
2 i
N − 1

)
θmax, where i ranges between 0 and N . θmax is half of the

angular distance between f0 and f1. It follows from trigonometry that the points :

fti = (1− ti)
f0

‖f0‖k
+ ti

f1

‖f1‖k
are equally spaced. Now, path-following can be codified by the following algo-

rithm :

ALGORITHM Y1 ← Pathfollow (f0, f1, Y0)

1 ᾱ, ū, γ̄, δ, Z, i← 0.02, 0.05, 2
3D

3/2m̄u, m̄u2γ̄ , Y0, 0.

2 Let ti be s.t. dproj(fti , fti+1
) ≤ 3ᾱ

8µ̄γ̄

3 REPEAT i, Z ← i+ 1,Pseudo(fti , Z)

4 Y1 ← Z

Line 2 can be done as described above, using that dproj(f0, f1) ≤ 1. Line 3

should be executed with the precision given by Corollary 1 of Chapter 2. The

actual machine precision necessary for that is bounded in Theorem 12 of Chapter

3. For a bound on the condition number, we should take 2µ̄, to use the result of

Lemma 31.

The following algorithm is corresponds to the machine of the Main Theorem.

ALGORITHM X1 ← SOLVE (f1)

1 f0, X0 ← STARTPOINT(n, d) ; µ̄ = 2 ;

2 REPEAT

3 µ̄← 2µ̄

4 X1 ←Pathfollow(f0, f1, X0, µ̄)

5 Z ←Solve(f,X, µ̄).

6 UNTIL Z 6= FAIL

7 Output Z

A better version of this algorithm retraces only the paths where the final result

was not proven to be an approximate zero, and the paths where the final result was

near the final result of another path.

Proof of the Main Theorem :

The set Ud are the complements of a section of the real algebraic variety Σ0

defined in Theorem 14 Chapter 4. This section is just the section of all the (f0, f)

8. COMPUTATIONAL MATTERS. 79

where f0 =STARTPOINT(n, d) . Since this section is proper in f0×Hd, the set Ud is

a non-trivial open set.

We set µ0 = µ(Σ0) and d0 = d(Σ0). The bound on µ comes from Theorem 14.

The complexity analysis of Solve follows from the complexity analysis of all

the called procedures.

It follows from Corollary 1 in Chapter 2 that the number of homotopy steps

is bounded by O(µ2D3/2). There are
∏
di paths to follow. The cost of each ap-

proximate Newton iteration is O(nDS(f)+n3) floating point operations (Theorem

11) with precision εm, where εm can be bound, as in the proof of Theorem 12 of

Chapter 3, by equation (39) :

εm =
1

32
δ µ̄(1 + 4µ̄)

√
D(2D + 1 + 2 maxS(fi) + p(n)) + 2H(f) + 2H(x)

The cost of performing each arithmetic operation is about log εm log log εm.

Therefore, The cost of Path-following can be bounded by :

(50) (
∏

di)(max di)
3/2µ2

(
(n+ 1)S(f) max di + (n+ 1)3

)
×

×P (logµ,max di, log n, logS(f), log logH(f))

where P is a polynomial.

In Lemma 33, we require εm to verify condition (47) :

4n3/2µ(Σ)H(f)d(Σ)εm(q) < 1.

This is the reason we cannot give a more convenient bound for the time spent

checking the results of path-following. We can only state that the cost of certifying

is bounded by :

(51) n(
∏

di)
2
∑

di
(
(n+ 1)S(f) max di + (n+ 1)3

)
×

×P (logµ,max di, log n, logS(f), log logH(f))

Adding equations (50) and (51), we obtain the time bound of the Main theorem.

This concludes the proof.

8. Computational matters.

A simplified version of the algorithms in this Thesis was implemented. It is

available through anonymous ftp at math.berkeley.edu until Dec 31, 1993. Starting

Jan 1, 1994, it will be available in another site, hopefuly labma.ufrj.br.

8. COMPUTATIONAL MATTERS. 80

Some of the algorithms mentioned earlier in this text can be adapted to benefit

from the architecture of modern computers. Three issues are extremely important :

• Overhead. Each time an evaluation of f or Df is performed, it is necessary

to go through the data structure representing f . In some machines, this

can be relatively time-consuming for big systems. Therefore, it is a good

idea to follow a large number of paths at once, and to go through the data

structure only once per evaluation, for all this group of paths.

• Pipelining. In order to take advantage of vector facilities, it is necessary

to reduce the most time-consuming routines to certain vector operations.

One possibility is, when following a large number of paths, to perform the

arithmetic operations with vectors, each coordinate corresponding to one

path.

• Parallelism. If several processors are available, there is a natural paral-

lelization of the algorithm, that is to assign a group of paths to every

processor. The algorithm is suitable to SIMD machines (Single Instruc-

tion Multiple Data) as well as to MIMD machines (Multiple Instruction

Multiple Data). If there are also vector facilities available, there will be a

trade-off between parallelism and pipe-lining.

APPENDIX A

Glossary of notations

‖.‖2 Vector and matrix 2-norm

‖.‖f Frobenius norm of a matrix

‖.‖1 Matrix 1 norm

‖.‖∞ Matrix sup norm

M t Real transpose of Matrix M

M* Complex transpose of Matrix M

diag(ai) Diagonal matrix A such that Ai,i = ai

rankM Rank of matrix M

Re(z) Real part of z

Im(z) Imaginary part of z

Hd A space of systems of polynomial equations 1

n In most places, number of equations. 1

d = (d1, . . . , dn) Degree of the systems of polynomials 1

H(x) Height of a rational point or polynomial 2

S(f) the number of non-zero coefficients of f 2

D Abreviation for max di 8

‖.‖k Kostlan’s unitary invariant norm 8

dproj(f, g) Projective distance between f and g by ‖.‖k 8

NV Generalized Newton operator 9

V Certain family of hyperplanes 9

β Newton step length 9

γ A kind of measure of the non-linearity of a mapping 9

α Product of β and γ 9

Naff Newton operator in affine space 10

dproj(x, y) Distance between points x and y in projective space 10

Nproj Newton operator in projective space 11

Npseu Pseudo-Newton operator 12

A† Moore-Penrose pseudo-inverse of matrix A 12

81

A. GLOSSARY OF NOTATIONS 82

µ(f, x) Condition number of f at x 13

η(f, x) A corrected norm of f(x) 13

fl(a � b) Computed result of a � b 33

εm Machine epsilon 36

‖.‖max sup norm of a matrix, considered as a vector 41

‖.‖max,2 A norm of the space of mappings of matrices into vectors 47

Ru(f) u-resultant of a system f of n polynomials 61

R(f) Resultant of a system f of n+ 1 polynomials 64

B A different definition of height 68

C A different definition of height 68

discrv(f) v-discriminant of f 73

Σaff Affine discriminant variety 73

Σ Discriminant variety 73

d(Σ) Complexity exponent of the discriminant variety Σ 77

µ(Σ) Condition number of the discriminant variety Σ 77

Σ0 Real variety of paths with a degenerate system 78

d(Σ0) Complexity exponent of Σ0 78

µ(Σ0) Condition number of Σ0 79

q A polynomial in D, S(f) and n. 88

Ud Non-degenerate locus for global solving 95

µ0 Conditioning of solving polynomial systems 95

d0 Complexity exponent of solving polynomial systems 95

APPENDIX B

The Author’s Address and e-mail

The author’s permanent mailing address is :

Gregorio Malajovich

Departamento de Matematica Aplicada

Instituto de Matematica

Universidade Federal do Rio de Janeiro

Caixa Postal 68530

Rio de Janeiro, RJ

CEP 21945

BRASIL

gregorio@@labma.ufrj.br

83

Bibliography

[1] Eugene L. Allgower and Kurt Georg, Continuation and Path-Following. Preprint, Colorado

State University, may 1992. Acta Numerica (1992) 1-64

[2] E. Anderson et alli, LAPACK users’ guide. SIAM, Philadelphia, 1992.

[3] Lenore Blum, Mike Shub and Steve Smale, On a theory of computation and complexity over

the real numbers : NP-completeness, recursive functions and universal machines. Bulletin of

the AMS, 21, 1, July 1989.

[4] John Canny, The complexity of robot motion planning, MIT Press, Cambridge, Mass., 1988.

[5] Gene H. Golub and Charles F. Van Loan, Matrix Computations. The John Hopkins University

Press, Baltimore and London, 1989, second printing, 1990.

[6] G. H. Hardy and E. M. Wright, Theory of Numbers, 4th edition, Oxford at the Clarendon

Press, 1965.

[7] F. S. Macaulay, Some formulæ in elimination, Proceedings of the London Mathematical So-

ciety, Vol XXXV, 1903.

[8] Alexander Morgan Solving polynomial systems using continuation for engineering and sci-

entific purposes. Prentice Hall Inc, Englewood Cliffs, New Jersey, 1987.

[9] Douglas M. Priest, On properties of floating point arithmetics : numerical stability and cost

of accurate computations. Draft of PhD Thesis, Berkeley, 9 Nov 1992.

[10] James Renegar, On the worst-case arithmetic complexity of approximating zeros of systems

of polynomials. Siam J. on Computing, 18, 2 , 350-370, Apr 1989.

[11] Michael Shub, Some remarks on Bezout’s Theorem and complexity theory. in M. Hirsch, J.

Marsden and M. Shub (ed), From Topology to Computation, Proceedings of the Smalefest,

1993.

[12] Michael Shub and Steve Smale, On the Complexity of Bezout’s Theorem I - Geometric

aspects. Journal of the AMS, 6, 2, Apr 1993.

[13] Michael Shub and Steve Smale, On the complexity of Bezout’s Theorem II - Volumes and

Probabilities. in: F. Eysette and A. Galligo, eds : Computational Algebraic geometry.

Progress in Mathematics 109, Birkhauser, 267-285, 1993.

[14] Michael Shub and Steve Smale, Complexity of Bezout’s Theorem III ; Condition number and

packing. Journal of Complexity 9, 4-14, 1993.

[15] Michael Shub and Steve Smale, Complexity of Bezout’s Theorem IV ; Probability of success ;

Extensions Preprint, Berkeley, 1993.

[16] Steve Smale, Newton method estimates from data at one point, in R. Erwing, K. Gross

and C. Martin (editors). The merging of disciplines : New directions in Pure, Applied and

Computational Mathematics. Springer, New York, 1986

84

BIBLIOGRAPHY 85

[17] B. L. Van der Waerden, Modern Algebra, Vol 2. F. Ungar publishing Co, New York, 1950

[18] J. H. Wilkinson, The algebraic eigenvalue problem, Clarendon Press, Oxford, 1965, Reprinted

1969.

[19] J. H. Wilkinson, Error analysis of direct methods of matrix inversion, Journal of the ACM,

8, 281-330, 1961.

