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GREGORIO MALAJOVICH

Abstract. A worst case bound for the condition number of a
generic system of polynomial equations with integer coefficients is
given. For fixed degree and number of equations, the condition
number is (non-uniformly, generically) pseudo-polynomial in the
input size.

1. Introduction

The Bézout problem may be stated as follows : given a generic sys-
tem of n homogeneous polynomial equations of degree d = (d1, . . . , dn)
in n + 1 complex variables, find all the roots in complex projective
space.

To find a root means to exhibit a (proven) approximate zero, i.e.,
a point whose iterates by a suitable Newton operator will converge
quadratically. See Smale [13] , and Shub and Smale [8] .

The complexity of solving the Bézout problem was bounded in terms
of the Shub and Smale condition number µ (See Shub and Smale [8, 9,
10, 11, 12] . For the corresponding discrete theory, see Malajovich [5,
6] ).

The condition number µ may be defined by :

µ(f) = max
ζ 6=0,f(ζ)=0

µ(f, ζ)

where :

µ(f, ζ) = ‖f‖k

∥∥∥∥Df(ζ)−1
|ζ⊥diag

(
‖ζ‖di−1

√
di

)∥∥∥∥
2

Here, ‖.‖k is Kostlan’s invariant norm ‖f‖k
2 =

∑ ‖fi‖k
2 where :

‖fi‖k
2 =

∑
|J |=di

|fiJ |2
J0! . . . Jn!

di!
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This norm is known to be U(n + 1)-invariant. The set of all f such
that µ(f) = ∞ is an algebraic variety Σ , called the discriminant
variety .

As we deal with such kind of continuous problems, it makes no sense
to speak of a worst case complexity (i.e. a worst case bound for µ ).
Instances of the problem may be arbitrarily ill-conditioned.

However, one may be concerned with the restriction of a continuous
problem to a discrete input set. For instance, one may study the Bézout
problem restricted to systems of integer or Gaussian integer coefficients.

Then one may speak on the classical (Turing, BSS over Z) complexity
of solving the restricted (discrete) problem. That complexity analysis
may use techniques and results from the original (continuous) problem.

Once we fix d = (d1, . . . , dn) , the number of coefficients of f is

bounded by
∑
i

(
di + n− 1

di

)
; therefore, input size may be measured

by the height of the coefficients of f .
Heights may be defined in many ways. For convenience, we will set :

H (a + bi) = |a|+ |b| , a, b ∈ Z
although this is a not the number-theoretical definition.

Let Hd be the space of all the systems of homogeneous polynomials
of degree d = (d1, . . . dn) in n variables, with complex coefficients. We
shall prove :

Main Theorem . Let d be fixed. There is a Zariski closed set Σ ⊆ Hd,
Σ 6= Hd, and there are numbers d(Σ′) and µ(Σ′) such that, for any
f ∈ Hd, f 6∈ Σ′, f with Gaussian integer coefficients,

µ(f) ≤ µ(Σ) H (f)d(Σ)

Furthermore,

d(Σ′) ≤ n
∏
di
∑

di

µ(Σ′) ≤ π

2
d(Σ′)

3
∏
di

(
e√
2π

)n−1

n
∑

di−n+2

1+d(Σ′)

In other words : once we fix d, the condition number µ(f) is pseudo-
polynomial (See Garey-Johnson [3]) in the input size (for f not in Σ,
of course).

Another restatement: for non-degenerate f , µ(f) is non-uniform
pseudo-polynomial in the input size.
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One can take the discriminant variety Σ instead of Σ′ in the state-
ment of the Main Theorem. This will decrease d(Σ), but may possibly
increase µ(Σ) .

The main Theorem provides us with an a priori bound on the con-
dition number (for µ not in Σ). This bound may be used to bound the
number of steps and the machine precision necessary for a homotopy
algorithm to succeed generically.

Also, it can be used to guarantee that certain z ∈ Cn+1 is indeed an
approximate zero of a non-degenerate f . One would use the bound on
µ(f) to bound the Wilkinson condition number κ of Df(z)|z⊥ . Stan-
dard linear system solvers are known to provide a result within error
bounded by O(κεm), where εm is the machine epsilon. (Recall d and n
are fixed). Therefore, one may compute :

β(f, z) = ‖Df(z)|z⊥
−1f(z)‖

within error O(κεm). Therefore, computing β to within error δ costs
O(log H (f)− log δ) .

The invariant γ may be bounded as in [8] by µmax di
3
2

2
, hence we may

obtain a reasonably cheap bound for α.
For a more algorithmic explanation of the consequences this Theo-

rem, see [5], chapter 5.

2. Outline of the proof

It was proven by Shub and Smale ([8]) that :

µ(f, ζ) =
1

dk(f,Σ ∩ Vζ)
where Vζ is the subspace of all f ∈ Hd such that f(ζ) = 0, and Σ is

the discriminant variety. The distance dk is taken in Projective Space,
i.e. :

dk(f, g) = min
λ∈C

‖f − λg‖k

‖f‖k

(1)

Equation (1) implies :

µ(f) ≤ 1

dk(f,Σ)

where we removed the restriction of the distance to subspace Vζ . If
Σ′ is a Zariski closed set containing Σ, then :

µ(f) ≤ 1

dk(f,Σ′)
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Assuming that f 6∈ Σ, we want to obtain a bound for d(f,Σ). As
H (f) is bounded, such a bound minf 6∈Σ,H(f)≤H d(f,Σ) should certainly
exist.

The discriminant variety Σ is the set of all f such that there is
ζ 6= 0 with f(ζ) = 0 and Df(ζ) not surjective. (recall that Df(ζ) is
a (n + 1)× n matrix). The root ζ can be taken to have norm 1, or to
belong to Pn .

An easy way to produce a proper Σ′ containing Σ is to consider a
chart Ai of Pn given by :

Ai : (x0, . . . , xi−1, xi+1, . . . , xn) 7→ (x0, . . . , xi−1, 1, xi+1, . . . , xn)

Then Σ′ contains Σ where Σ′ is the zero-set of p = discr(f ◦ Ai) =
R(f1 ◦ Ai, . . . , fn ◦ Ai, detD(f ◦ Ai) , where R is the resultant (See
Salmon [7], Macaulay [4] or Van der Waerden [14]) . In section 3, we
will show that :

Proposition 1. The polynomial p defined above is a multi-homogeneous
polynomial of degree r1, . . . , rn in sets of m1 variables f1, . . . , mn vari-

ables fn, with integer coefficients, where mi =

(
di + n− 1

di

)
and

ri = (
∏
dj)(1 +

∑
dj−n
di

) . The sum of the absolute values of the co-
efficients of p is bounded above by :

B (p) ≤

3
∏
di

(
e√
2π

)n−1

n
∑

di−n+ 3
2 e

1
12


∑

ri

We may lower each of the numbers ri by choosing the discriminant
variety instead of Σ′. The author does not know how to provide a
reasonable bound for µ(Σ).

In section 4, we will prove the :

Theorem 1. Let p be a multi-homogeneous polynomial of degree r1, . . . , rn
in sets of variables f1 ∈ Cm1, . . . , fn ∈ Cmn , with integer coefficients.
Assume also that groups of variables fi range over Gaussian integers.
Then either p(f) = 0, or :

d2(f, Z(p)) ≥ 1
π
2

max
√
mi
∑
riB (p)

(
1

H (f)

)∑ ri

where Z(p) is the zero-set of p and d2 is the projective 2-distance.

Proof of the Main Theorem : We set d(Σ) =
∑
ri . In section 5,

we shall prove the Lemma :
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Lemma 1. ∑
ri ≤ n

∏
di
∑

di

We apply Theorem 1 to the polynomial p = discr(f) defined above.
We conclude that if f has Gaussian integer coefficients then either
discrf = 0 , or :

d2(d,Σi) ≥
1

π
2

max
√
mid(Σ)

(
3
∏
di(

e√
2π

)n−1n
∑

di−n+ 3
2 e

1
12

)d(Σ)

(
1

H (f)

)d(Σ)

Furthermore, we will need from section 5 the :

Lemma 2.

dk(f, g) ≤
√
nmax di(

e√
2π

)n−1e1/12
√
n d2(f, g)

Therefore, under the conditions of the Main Theorem, either f ∈ Σi

(some i), or for all i :

dk(d,Σi) ≥
1

π
2

max
√
mid(Σ)

(
3
∏
di(

e√
2π

)n−1n
∑

di−n+ 3
2 e

1
12

)1+d(Σ)

(
1

H (f)

)d(Σ)

We may also bound :

√
mi =

√√√√( di + n− 1
di

)
≤
√

(n− 1)di+n−1 ≤
√
n
d(Σ)

So we set, as in Main Theorem :

µ(Σ) =
π

2
d(Σ)

3
∏
di

(
e√
2π

)n−1

n
∑

di−n+2

1+d(Σ)

With this notation, either f ∈ Σi for some i, or :

d(f,Σ) ≥ min d(f,Σi) ≥ µ(Σ)−1

(
1

H (f)

)d(Σ)

Therefore,

µ(f) ≤ 1

dk(f,Σ)
≤ µ(Σ) H (f)d(Σ)

concluding the proof of the Main Theorem.

The following Lemma is proved in Section 5 , and used two times in
this paper. Therefore we state it here :
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Lemma 3. Let d ≥ 1 be fixed, and let J = J1 . . . Jn .

max
|J |=d

(
d
J

)
≤ nd

(
e√
2π

)n−1√
ne

1
12

3. Proof of Proposition 1

The purpose of this section is to prove Proposition 1 . The first part
of the proposition is easy, and will be proved now. The second part will
require some intermediate results, and therefore it will be postponed
to the end of this section.

The number mi of fiJ is clearly

(
di + n− 1

di

)
, that is, the number

of possible monomials of degree di in n variables.

3.1. Degree of the discriminant. Let p = discr(f) = R(f1, . . . , fn, detDf) ,
where the fi are non-homogeneous polynomials of degree di in variables
x1, . . . , xn. The notation R(.) stands for the resultant of a system of
polynomials.

As it is well-known, the resultantR(f1, . . . , fn, g) is a multi-homogeneous
polynomial in each set of variables fi or g , with integer coefficients.

It’s degree in each set of variables is given by :

degg R(f1, . . . , fn, g) =
∏
di

degfi R(f1, . . . , fn, g) = (deg g)
∏
j 6=i

dj

Now, if we set g = detDf , then degx g =
∑
dj − n . Each coeffi-

cient of g is a multi-homogeneous monomial of degree 1 in each set of
variables fi or g . Therefore,

degfi p = degfi R(f1, . . . , fn, g) + degg R(f1, . . . , fn, g) degfi g

=
∏
dj +

∏
j 6=i

dj

(∑ dj − n
)

=
∏
dj

(
1 +

∑
dj − n
di

)
= ri

So the degree of p in the set of variables fi is precisely ri.



WORST POSSIBLE CONDITION NUMBER OF POLYNOMIAL SYSTEMS 7

3.2. Alternative definitions of height. The second part of propo-
sition 1 requires some alternative definitions of Height. Also, some
properties of those new heights will be discussed.

We shall work in a more general framework. In this paper, we shall
assume that some height H (.) is defined in a ring R. The main ex-
amples are the integers and the Gaussian integers. We require the
following axioms to be true :

H (1) = H (−1) = H (i) = H (−i) = 1

H (a + b) ≤ H (a) + H (b)

H (ab) ≤ H (a)H (b)

Those are verified by our previous definition of H (.) as H (a + bi) =
|a|+ |b| .

Let K be the field of fractions of R, and let L = K[f1, . . . , fN ] where
the fi are indeterminates (transcendental) over K. If a is an integer in
L, a can be written in the form a =

∑
aIf

I , where aI ∈ R and I are
indices. We define a height B (.) on the ring of integers of L :

B
(∑

aIf
I
)

=
∑

H (aI)

The following properties of B (.) are obvious :

B (1) = B (−1) = B (i) = B (−i) = 1

B (g + h) ≤ B (g) + B (h)

B (gh) ≤ B (g)B (h)

We also want to extend this definition to monic integral polynomials
in L[t] (t ∈ R), but in a different way. We define :

C
(
td + pd−1td−1 + · · ·+ p0

)
= max

(
B (pi)

1
d−i
)

This is not properly a height (since it make no sense to add monic
polynomials).

The following facts were proved by Canny [2] for the particular case
L = K = Q.

Lemma 4. Let p, q integral polynomials in L and let M be a n × n
matrix with integral entries in L.

C (pq) ≤ C (p) + C (q)

C (p/q) ≤ C (p) + 2C (q)

C (detM− tI) ≤ nmax B (Mij)

Proof of lemma 4 :
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Part 1 : We write :

p(t) = tm + pm−1t
m−1 + · · ·+ p0

q(t) = tn + qn−1t
n−1 + · · ·+ q0

r(t) = p(t)q(t) = tm+n + rm+n−1t
m+n−1 + · · ·+ r0

where :

ri =
∑

0≤j≤m
0≤i−j≤n

pjqi−j

By definition,

C (pq) = max B

 ∑
0≤j≤m

0≤i−j≤n

pjq
1

n+m−i

i−j



C (pq) ≤ max

 ∑
0≤j≤m

0≤i−j≤n

B (pj)B (qi−j)


1

n+m−i

So there is i such that :

C (pq)n+m−i ≤
∑

0≤j≤m
0≤i−j≤n

C (p)m−jC (q)n−i+j

On the other hand,

(C (p) + C (q))n+m−i =
∑

i−n≤j≤m

(
n+m− i
m− j

)
C (p)m−jC (q)n−i+j

Comparing term by term,

C (pq)n+m−i ≤ (C (p) + C (q))n+m−i

Hence

C (pq) ≤ C (p) + C (q)

Part 2 :

p(t) = tm + pm−1t
m−1 + · · ·+ p0

q(t) = tn + qn−1t
n−1 + · · ·+ q0

r(t) = p(t)/q(t) = tm−n + rm−n−1t
m−n−1 + · · ·+ r0
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Since p and q are monic, the quotient r(t) can be computed by the
following recurrence :

rm−n = 1

rm−n−j−1 = pm−j−1 −
∑

0≤i≤j
rm−n−iqn+i−j−1

We have :

B (rm−n−j−1) ≤ B (pm−j−1) +
∑

0≤i≤j
B (rm−n−i)B (qn+i−j−1)

B (rm−n−j−1) ≤ C (p)j+1 +
∑

0≤i≤j
B (rm−n−i)C (q)j+1−i

We proceed by induction on i. Assume that B (rm−n−j) ≤ (C (p) +
2C (q))j for all j ≤ i. This is trivially true for i = 0. By induction,

B (rm−n−j−1) ≤ C (p)j+1 +
∑

0≤i≤j
(C (p) + 2C (q))iC (q)j+1−i

≤ C (p)j+1 + C (q)
∑

0≤i≤j
(C (p) + 2C (q))iC (q)j−i

≤ C (p)j+1 + C (q)
∑

0≤i≤j
2i−j(C (p) + 2C (q))j

≤ C (p)j+1 + 2C (q)(C (p) + 2C (q))j

≤ C (p)(C (p) + 2C (q))j + 2C (q)(C (p) + 2C (q))j

≤ (C (p) + 2C (q))j+1

Thus,

C (r) ≤ C (p) + 2C (q)

Part 3 :

det(M − tI) = tn + an−1t
n−1 + · · ·+ a0

Coefficient ai is the sum of nn−i products of at most n− i entries of
height B (.) less than B (M), so we have : |ai| ≤ (nB (M))n−i.

C (det(M− tI)) ≤ nB (M)

Lemma 4 is now proved.
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3.3. Height of the determinant. If g =
∑
gJx

J ∈ L[x], we write
B (g) = maxJ B (gJ) .

Lemma 5. Let g = detDf(x) ∈ L[x] . Then :

B (g) ≤
∏
di

(
e√
2π

)n−1

n
∑

di−n+ 1
2 e

1
12

Proof : If we consider g as an element of R[f, x] , then we may
bound : H (mI) ≤

∏
di , where mI is the coefficient of a monomial of

g .
Indeed, each monomial : mIf1,I1f2,I2 . . . fn,Inx

∑
Ij−
∑

ej can be writ-
ten as :

det


f1,I1

∂xI1
∂x1

. . . f1,I1
∂xI1
∂xn

...
...

fn,In
∂xIn

∂x1
. . . fn,In

∂xIn

∂xn

 = det


I1,1 . . . I1,n

...
...

In,1 . . . In,n

 f1,I1f2,I2 . . . fn,Inx
∑

Ij−
∑

ej

Therefore, we may write :

mI = det


I1,1 . . . I1,n

...
...

In,1 . . . In,n


Each line of this matrix has 2-norm bounded above by di. Therefore,

mI ≤
∏
di . Set :

ρ = max
|J |=

∑
di−n

#{I, |Ij| = dj,
∑

Ij −
∑

ej = J}

Now we have : B (g) ≤ ρ
∏
di . It remains to bound ρ. Clearly,

ρ ≤
( ∑

dj − n
d1 − 1 . . . dn − 1

)
=

∑
di − n!

d1 − 1! . . . dn − 1!

Indeed, this is the number of arrangements of
∑
di − n different

variables into n sets of size di − 1. This seems to the author a rather
pessimistic bound, and may be improved.

We may now apply Lemma 3 :

ρ ≤ n
∑

di−n
(

e√
2π

)n−1√
ne

1
12

Proving Lemma 5 .
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3.4. Macaulay’s formula for the resultant. Let M be the vector
space generated by all monomials of degree D =

∑
d̃i − n in variables

x1, . . . , xn.
To each system of n+ 1 homogeneous polynomials of degree d̃1, . . . ,

d̃n+1, we associate a matrix A(f), that corresponds to the operator :

g 7→
∑

gifi

where gi is a polynomial of degree D − d̃i. This matrix is defined as
follows :

Let xm be a monomial of degree D . Monomial xm is said to be
unreduced in xi if and only if mi ≥ d̃i . Obviously, xm is unreduced in
at least one of the variables x1, . . . , xn. Let xl be the first variable xm

is unreduced in :
Matrix A(f) maps xm into xm

xl
dl
fl.

Matrix A(f) is square. It is easy to see that if the fi have a non-zero
common root, then detA(f) = 0. Indeed, let x̃ be that common root,
and let X̃ ∈M be the vector of all x̃m . For any system g,

gA(f)X̃ =
∑

gi(x̃)fi(x̃) = 0

Therefore, A(f)X̃ = 0, hence A(f) is not surjective.

The converse is not true. The polynomial detA(f) may assume
different values, depending on the ordering of variables xi . It was
proven by Macaulay [4] that :

R(f1, . . . , fn+1) = gcd detA(f)

where the gcd is taken over all possible orderings of the xi’s. Further-
more, let B(f) be the submatrix of A(x) corresponding to the subspace
of monomials unreduced in more than one variable.

Theorem 2 (Macaulay).

R(f1, . . . , fn+1) =
detA(f)

detB(f)

For a proof, see Macaulay [4] .

3.5. End of the proof of Proposition 1. We proved (Lemma 5)
that the height B (det Df) ∈ L[x] is bounded by :

B (det Df) ≤
∏
di

(
e√
2π

)n−1

n
∑

di−n+ 1
2 e

1
12
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Hence, the height of matrices A(f) and B(f) defined above verifies :

B (A(f)) ≤
∏
di

(
e√
2π

)n−1

n
∑

di−n+ 1
2 e

1
12

B (B(f)) ≤
∏
di

(
e√
2π

)n−1

n
∑

di−n+ 1
2 e

1
12

Let I denote the identity. According to Lemma 4 :

B (discr(f)) ≤ (C (det A− tI) + 2C (det B− tI))
∑

ri

≤ (nB (A(f)) + 2nB (B(f)))
∑

ri

≤ (3nB (det Df))
∑

ri

≤

3n
∏
di

(
e√
2π

)n−1

n
∑

di−n+ 1
2 e

1
12


∑

ri

4. Proof of Theorem 1

We shall construct an embedding of Hd into CN , N large enough, so
that the image of Σ be the intersection of a hyperplane with the image
of Hd .

4.1. Embedding of Hd into CN . More precisely : Let

Vri : Cmi → C
Mi

where Mi =

(
mi + ri − 1

ri

)
, be the ri-uple embedding. Let

Sn : CM1 × · · · × CMn → C
N , N =

∏
Mi

be the Segre embedding. Define :

E : Hd → C
N

f 7→ Sn(Vr1(f1), . . . , Vrn(fn))

Embedding E maps Hd into the space of all monomials that may
appear in multivariate homogeneous polynomial p(f1, . . . , fn) .

Therefore, if we define the push-forward E∗p of p as the linear form
whose coordinates are the monomials of p, we have the relation :

p(f) = (E∗p)(E(f))

Hence Σ = p⊥ ∩ E(Hd) . (We associated Cn to its dual, and p to a
vector. Recall that p has integer – hence real – coefficients).
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4.2. Linear case.

Lemma 6. Let Π = p⊥ be a hyperplane in CN , where p has integer
coordinates. Let y ∈ CN have Gaussian integer coordinates. Then
either y ∈ Π, or :

d2(y,Π) ≥ 1

B (p)H (y)

Proof : The orthogonal projection of y in Π is given by :

y − ppt

‖p‖2
2y

so the projective distance to Π is :

d2(y,Π) =
‖p‖2

‖p‖2
2‖y‖2

|pty|

If p 6∈ Π, then pty 6= 0 , so |pty| ≥ 1 and :

d2(y,Π) ≥ 1

‖p‖2‖y‖2

≥ 1

B (p)H (y)

Lemma 6 implies, for f 6∈ Σ, that :

d2(E(f), E(Σ)) ≥ 1

B (p)H (E(f))
≥ 1

B (p)H (f)
∑

ri

The distance d2(f,Σ) can be bounded once we know a bound for the
Lipschitz constant of E :

Lemma 7.

d2(E(f), E(g)) ≤ λd2(f, g)

where one can take λ = π
2

∑
ri max

√
mi

Lemma 7 will be proved in the next three subsections.

4.3. The r-uple embedding. Let :

Vr : C
m → C

M , M =

(
m+ r − 1

r

)
x 7→ (. . . , xJ , . . . )t , |J | = r

be the r-uple embedding; then :

Lemma 8.
‖DVr(x)‖∞
‖Vr(x)‖2

≤ r
1

‖x‖2
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and therefore :

‖DVr(x)‖2

‖Vr(x)‖2

≤ r
√
m

1

‖x‖2

Indeed, assume without loss of generality that x1 ≥ x2 ≥ · · · ≥ xm .
Then :

Vr(x) =
(
x1

r, x1
r−1x2, . . . x1

r−1xm, x1
r−2x2

2, . . . , xm
r
)t

Therefore,

‖Vr(x)‖2 ≥ |x1|r−1‖x‖2 (2)

On the other hand, for all monomials xJ ,∣∣∣∣∣∂xJ∂xi

∣∣∣∣∣ ≤ Ji|x1|r−1

Hence,

‖DVr(x)‖∞ = max
∑
i

∣∣∣∣∣∂xJ∂xi

∣∣∣∣∣ ≤ r|x1|r−1 (3)

Dividing inequality (3) by inequality (2) we prove Lemma 8.

4.4. The Segre embedding. Let N =
∏
Mi and let :

Sn : C
M1 × CM2 × · · · × CMn → C

N

(y1, . . . , yn) 7→ (. . . , y1,k1y2,k2 . . . yn,kn , . . . )
t

be the Segre embedding. Then :

Lemma 9. ∥∥∥∂Sn(y)
∂yj

∥∥∥
2

‖S(y)‖2

≤ 1

‖yj‖2

Indeed,

Sn(y) =
(
St
n−1(y1, . . . , yn−1)yn,1, . . . , S

t
n−1(y1, . . . , yn−1)yn,Mn

)t

Hence, ‖Sn(y)‖2
2 = ‖Sn−1(y1, yn−1)‖2

2‖yn‖2
2 . Therefore, by induc-

tion,

‖Sn(y)‖2 = ‖y1‖2‖y2‖2 . . . ‖yn‖2 (4)



WORST POSSIBLE CONDITION NUMBER OF POLYNOMIAL SYSTEMS 15

The norm of the derivative may be bounded as follows :

∂Sn
∂yn

=


Sn−1(y1, . . . , yn−1)

Sn−1(y1, . . . , yn−1)
. . .

Sn−1(y1, . . . , yn−1)


Thus,∥∥∥∥∥∂Sn∂yn

∥∥∥∥∥
2

≤ ‖Sn−1(y1, . . . , yn−1)‖2 = ‖y1‖2‖y2‖2 . . . ‖yn−1‖2 (5)

Dividing equation (5) by equation (4), one proves Lemma 9 for the
case j = n. Reordering variables, the Lemma is true for any j.

4.5. End of the proof of Theorem 1. Let darc be the arc-length
2-distance in Projective Space (or in the unit 2-sphere). Lemmas 8
and 9 imply that :

darc(E(f), E(g)) ≤
∑

ri
√
midarc(f, g) ≤ max

√
mi

∑
ri

darc(f, g)

Using inequality d2(f, g) ≤ darc(f, g) ≤ π
2
d2(f, g), we get :

d2(E(f), E(g)) ≤ π

2
maxmi

∑
ri

d2(f, g)

Proving Lemma 7 . Theorem 1 now follows directly from Lemma 6.

5. Proof of Lemmas

5.1. Proof of Lemma 1. Recall that ri =
∏
dj

(
1 +

∑
dj−n
di

)
. There-

fore : ∑
ri ≤

∏
dj

(
n+

∑
dj
∑ 1

dj
− n

∑ 1

dj

)
If
∑ 1

dj
≥ 1, then

∑
ri ≤

∏
dj
∑
dj
∑ 1

dj
≤ n

∏
dj
∑
dj

On the other hand, if
∑ 1

dj
< 1 , then

∑
ri ≤

∏
dj(n +

∑
dj) <

n
∏
dj
∑
dj .

This proves lemma 1

5.2. Proof of Lemma 2. By construction,

‖h‖2√√√√maxi,|J |=di

(
di
J

) ≤ ‖h‖k ≤ ‖h‖2
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Therefore, as we switch to projective space,

dk(f, g) ≤

√√√√ max
i,|J |=di

(
di
J

)
d2(f, g)

Inserting Lemma 3, we get :

dk(f, g) ≤

√√√√nmax di

(
e√
2π

)n−1

e
1
12

√
n

(
di
J

)
d2(f, g)

As in Lemma 2

5.3. Proof of Lemma 3.

max
|J |=d

(
d
J

)
= max
|J |=d

Γ(d+ 1)∏
Γ(Ji + 1)

≤ Γ(d+ 1)

Γ( d
n

+ 1)n

The following bound is a consequence of Stirling’s formula (Ahlfors,
[1], chapter 5, section 2.5, exercise 2, page 206) :

√
2πzz−

1
2 e−z ≤ Γ(z) ≤

√
2πzz−

1
2 e−ze

1
12z

Using this bound, we obtain :

max
|J |=d

(
d
J

)
≤
√

2π
1−n (d+ 1)d+ 1

2(
( d
n

+ 1)
d
n + 1

2

)n e−d+ 1
2(

e−
d
n
−1
)n e 1

12(d+1)

≤
√

2π
1−n

(
d+ 1
d
n

+ 1

)n (
d

n
+ 1

)−n−1
2

en−1e
1

12(d+1)

≤ nd

 e
√

2π
√

d
n

+ 1

n−1
√
ne

1
12

≤ nd
(

e√
2π

)n−1√
ne

1
12

As in Lemma 3
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