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Abstract. The number of steps of homotopy algorithms for solv-
ing systems of polynomials is usually bounded by the condition
number of the homotopy path. A generic bound on the condition
number of homotopy path between systems with integer coefficients
will be given.

1. Introduction

In [6], it was proven that there is a Zariski closed set Σ′ in the
space of all systems of homogeneous polynomial equations of degree
d = (d1, . . . ,dn) in n + 1 variables, with the following property : For
any f not in Σ′, f with integer (resp. Gaussian integer) coefficients,
the Shub and Smale condition number µ(f) of f satisfies :

µ(f) ≤ µ(Σ′) H (f)d(Σ′)

The numbers µ(Σ′) and d(Σ′) depend only on n and d, and :

H (f) = max (Re|fiJ |+ Im|fiJ |)
where fiJ ranges over all the coefficients of f . For more details, see [6]

and [8].

In this paper, a similar theorem is proven for the condition number
of a linear homotopy path {f (t)} = {(1 − t)f (0) + tf (1)} . Here, t is a
real parameter in [0, 1]. The same homotopy path will be represented
by the pair (f (0), f (1)) .

This bound will provide a generic worst case bound for the number
of steps of a homotopy algorithm. See [4, 5, 8, 9, 10, 11, 12].

Let Hd be the complex vector space of all systems of n homogeneous
polynomial equations of degree d in n+1 variables. The notation P(Hd)
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will denote the projectivization of the complex vector space Hd. One
may consider a path as a subset of P(Hd) . Its Zariski-closure is always
a complex line (provided f (0) 6= f (1)). Generically speaking, it meets
the discriminant variety Σ ⊂ P(Hd) . This is still true if one fixes one
of the systems f (0) and f (1).

We may also represent the path {f (t)} by an element (f (0), f (1)) of
the space H = Hd × Hd. Once again, it makes sense to look at the
Zariski closure of the set of paths meeting the discriminant variety Σ,
as subsets of P(Hd). Clearly, all non-constant paths are in this closure.
Therefore, it makes no sense to look for a closed set in H to generalize
Σ′ of [6].

However, a generalization is possible if we consider the real vector
space R(H) = (Re(H), Im(H)) . This space is endowed with Zariski
topology as a real vector space. Indeed, we will prove :

Main Theorem 1. Let n and d = (d1, . . . ,dn) be fixed. Let H be the
complex vector space of all pairs (f (0), f (1)) of polynomial systems of
degree d. Then there is a non-trivial Zariski closed set Σ′′ in R(H)
such that, for all (f (0), f (1)) not in Σ′′ and for all t ∈ [0, 1] ,

µ(f (t)) ≤ µ(Σ′′) H
(
(f (0), f (1))

)d(Σ′′)

where the numbers µ(Σ′′) and d(Σ′′) depend only on d, and :

H
(
(f (0), f (1))

)
= max

(
H
(
f (0)

)
,H

(
f (1)

))
Moreover, one can choose d(Σ′′) = 2n

∏
dj

∑
dj

We will first construct the set Σ′′ containing all the singular paths.
Then, using a result in [6], we will bound the ‘distance’ between a

path {f (t)} 6∈ Σ′′ and Σ′′, in terms of H
(
(f (0), f (1))

)
. Finally, we will

bound the condition number µ({f (t)}) in terms of the inverse of the
distance to Σ′′ . A suitable distance may be introduced in the ‘real
projectivization’ of R(H) by :

dRP((f
(0), f (1)), (g(0), g(1)))2 =

1

2

(
dRP(f

(0), g(0))2 + dRP(f
(1), g(1))2

)
On the right hand side, dRP(., .) is the projective 2-distance :

dRP(f, g) = min
λ∈R∗

‖f − λg‖k

‖f‖k

This distance can also be interpreted as the sine of the (real) angle
between f and g. The norm ‖.‖k denotes the SU(n+1) invariant norm
in Hd (See [2, 8]).
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This is similar to the usual projective distance :

dP(f, g) = min
λ∈C∗

‖f − λg‖k

‖f‖k

Clearly, dP(f, g) ≤ dRP(f, g).

2. Breaking the algebraic structure

In order to construct the set Σ′′, we will need somehow to ‘break’
the algebraic structure of the problem. The crucial step for this is the
following, elementary fact :

Lemma 1. Let g ∈ C[x] . Let R denote the resultant of two degree
deg g polynomials. Then g has a real factor of degree ≥ 1 if and only
if R(g, ḡ) = 0 .

Proof. Suppose g has a real factor r. Then r has a real zero ζ, or a
pair of conjugate zeros ζ and ζ̄. In both cases, ζ is a common zero of
g and ḡ. Therefore the resultant R(g, ḡ) vanishes.

Conversely, suppose that R(g, ḡ) = 0. Then g and ḡ have a common
zero ζ. Furthermore, g(ζ̄) = ḡ(ζ) = 0 , so ζ̄ is a zero of g, and the
polynomial (x− ζ)(x− ζ̄) = x2 − 2x Re(ζ) + |ζ|2 divides g.

We may now construct the polynomial h(t) = R(f (t) detD′f (t)) where
D′ denotes the derivative with respect to x1, . . . , xn, and where R de-
notes Macaulay’s resultant [1, 3] of n+ 1 homogeneous polynomials in
n+1 variables. R is a polynomial of degree (

∏
j 6=i dj)(

∑
dj−n)+

∏
j dj

in each set of ‘variables’ f
(t)
j . As a polynomial in t, it has degree

bounded by n
∏

dj
∑

dj.
Vanishing of the resultant is a necessary and sufficient condition for

f (t) and detD′f (t) to have a common root in Pn . This common root
may be a degenerate root of f (t) or a root of f (t) at ‘infinity’ x0 = 0 .
Indeed, if f (t)(x) = 0 and D′f (t)(x) is not surjective, we obtain :

0 = Df (t)(x).x = x0
∂f (t)

∂x0

+D′f (t)(x).


x1
...
xn


However, if Df (t)(x) is surjective, the columns of D′f (t)(x) cannot

spawn ∂f (t)

∂x0
, hence x0 = 0.

Clearly, if ft ∈ Σ for some real t, then h has a real factor. We now
define the mapping :

p : H → C

(f (0), f (1)) 7→ R(h, h̄)
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The mapping p defines a polynomial from R(H) into R2. If some
f (t) ∈ Σ, then p(f (0), f (1)) vanishes. Let Σ′′ = Z(p).

Lemma 2. The set Σ′′ is a non-trivial closed set.

We mean that p does not vanish uniformly on R(H).

Proof. Let (f (0), f (1)) be generic, in the following sense : We require
f (0) and f (1) to be non-degenerate, and to have no root at ‘infinity’
x0 = 0. We also want f (0) and f (1) not colinear.

We will prove that for a ‘generic’ complex number λ (in a sense we
will precise later), the path (f (0), λf (1)) is not in Σ′′. Compare with
Theorem 1 in [7].

Indeed, let hλ(t) = R(f (t), detD′f (t)) where f (t) = (1−t)f (0)+tλf (1).
The polynomial hλ does not vanish uniformly in t, since f (0) has no

degenerate solution, and no solution at infinity. LetD be the (maximal)
degree of hλ, as a polynomial in t.

Let t1, . . . , tD be the roots of h1. We will see that a ‘generic’ choice
of λ will put t1, . . . , tD in position s1, . . . , sD such that si 6= s̄j for
all i, j, possibly i = j. Therefore, hλ has no real factor in general, and
(f (0), λf (1)) is not in Σ′′ .

Indeed, for almost all λ, we may choose si such that :

(1− ti)f (0) + tif
(1) = ci

(
(1− si)f (0) + siλf

(1)
)

where ci is some complex number. If we do that, hλ(si) = h(ti)ci
D =

0 . We have to solve :

ci =
1− si
1− ti

=
λsi
ti

Recall that the genericity hypothesis in (f (0), f (1)) prevents ti = 0 or
ti = 1. We obtain :

siλ− siλti = ti − siti
Solutions are :

si =
ti

λ− λti + ti
Those si are finite for all λ 6= −ti

1−ti , all i. We still need to prove that

for ‘generic’ λ, there are no i, j (possibly i = j) such that si = s̄j, or
again : Im(si

−1 + sj
−1) = 0. (Recall that si 6= 0).

The situation to avoid is :

Im

(
λ− λti + ti

ti
+
λ− λtj + tj

tj

)
= 0
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This is :

Im

(
tj − 2titj + ti

titj
λ+ 2

)
= 0

Therefore, it suffices that λ avoids a finite set of points and real lines
in complex plane.

3. End of the proof

We are now under the hypotheses of Theorem 1 in [6] :

Theorem 1. Let p be a multi-homogeneous polynomial of degree r1, . . . , rn
in sets of variables f1 ∈ Cm1, . . . , fn ∈ Cmn , with integer coefficients.
Assume also that groups of variables fi range over Gaussian integers.
Then either p(f) = 0, or :

dP(f, Z(p)) ≥ 1
π
2

max
√
mi
∑
riB (p)

(
1

H (f)

)∑ ri

where Z(p) is the zero-set of p and d is the complex projective 2-
distance.

Here, the number B (p) depends only on p. We set d(Σ′′) =
∑
ri ≤

2n(
∏

dj)(
∑

dj−n) . We define µ(Σ′′) as π
2

max
√
mi
∑
riB (p) . Then,

using dRP ≤ dRP , we obtain a weaker version of the Main Theorem :

Theorem 2. Let n and d = (d1, . . . ,dn) be fixed. Let H be the space
of all pairs (f (0), f (1)) of polynomial systems of degree d. Then there is
a non-trivial Zariski closed set Σ′′ in R(H) such that, for all (f (0), f (1))
not in Σ′′ and for all t ∈ [0, 1] ,

1

dRP((f (0), f (1)),Σ′′)
≤ µ(Σ′′) H

(
(f (0), f (1))

)d(Σ′′)

where the numbers µ(Σ′′) and (.Σ′′) depend only on d, and :

H
(
(f (0), f (1))

)
= max(H

(
f (0)

)
,H

(
f (1)

)
)

In order to conclude the proof of the Main Theorem, we will need
the

Lemma 3.

max
t∈[0,1]

µ(f (t)) ≤ 1

dRP((f (0), f (1)),Σ′′)

Since µ is real-scaling invariant, we may assume without loss of gen-

erality that
∥∥∥f (t)

∥∥∥
k

= 1 always.
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It was proven in [8] that for a given system f ,

µ(f) ≤ 1

dP(f,Σ)

The condition number of a homotopy path was defined by :

µ({f (t)}) = max
t∈[0,1]

µ(f (t))

Hence :

µ({f (t)}) ≤ max
t∈[0,1]
g∈Σ

1

dP(f (t), g)
=

1

min t∈[0,1]
g∈R(Σ)

dP(f (t), g)

Suppose that this minimum was attained at some t ∈ [0, 1] and some
g ∈ Σ :

dP(f
(t), g) =

minλ∈C∗
∥∥∥f (t) − λg

∥∥∥
k

‖f (t)‖k

Since λg also belongs to Σ, we may scale g by λ so that :

dP(f
(t), g) =

∥∥∥f (t) − g
∥∥∥

k

‖f (t)‖k

= dRP(f
(t), g)

This shows that :

µ({f (t)}) ≤ 1

dRP(f (t), g)

We may now define a new homotopy path g(s) that is, in some sense,
the translation of f (t) :

g(s) = f (s) + (g − f (t))

With that definition :

dRP({(f (0), f (1))}, {(g(0), g(1))})2 =
1

2

(
dRP(f

(0), g(0))2 + dRP(f
(1), g(1))2

)
But dRP(f

(0), g(0)) ≤ ‖g−f
(t)‖

k

‖f (0)‖
k

=
∥∥∥g − f (t)

∥∥∥
k
, and similarly for dRP(f

(0), g(0)).

Therefore :

dRP({(f (0), f (1))}, {(g(0), g(1))})2 ≤
∥∥∥g − f (t)

∥∥∥
k

2
= dRP(f

(t), g)2

Therefore,

µ({f (t)}) ≤ 1

dRP(f (t), g)
≤ 1

dRP((f (0), f (1)), (g(0), g(1)))

Moreover, since (g(0), g(1)) ∈ Σ′′,

dRP((f
(0), f (1)), (g(0), g(1))) ≥ dRP((f

(0), f (1)),Σ′′)
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Thus, we obtained :

µ({f (t)}) ≤ 1

dRP((f (0), f (1)),Σ′′)

This proves the Lemma, and hence the Main Theorem.
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