A GENERIC WORST-CASE BOUND ON THE CONDITION NUMBER OF A HOMOTOPY PATH

GREGORIO MALAJOVICH

ABSTRACT. The number of steps of homotopy algorithms for solving systems of polynomials is usually bounded by the condition number of the homotopy path. A generic bound on the condition number of homotopy path between systems with integer coefficients will be given.

1. INTRODUCTION

In [6], it was proven that there is a Zariski closed set Σ' in the space of all systems of homogeneous polynomial equations of degree $\mathbf{d} = (\mathbf{d}_1, \ldots, \mathbf{d}_n)$ in n + 1 variables, with the following property : For any f not in Σ' , f with integer (resp. Gaussian integer) coefficients, the Shub and Smale condition number $\mu(f)$ of f satisfies :

$$\mu(f) \le \mu(\Sigma') \mathbf{H}(\mathbf{f})^{d(\Sigma')}$$

The numbers $\mu(\Sigma')$ and $d(\Sigma')$ depend only on n and \mathbf{d} , and :

$$\mathbf{H}(\mathbf{f}) = \max\left(\operatorname{Re}|f_{iJ}| + \operatorname{Im}|f_{iJ}|\right)$$

where f_{iJ} ranges over all the coefficients of f. For more details, see [6] and [8].

In this paper, a similar theorem is proven for the condition number of a linear homotopy path $\{f^{(t)}\} = \{(1-t)f^{(0)} + tf^{(1)}\}$. Here, t is a real parameter in [0, 1]. The same homotopy path will be represented by the pair $(f^{(0)}, f^{(1)})$.

This bound will provide a *generic* worst case bound for the number of steps of a homotopy algorithm. See [4, 5, 8, 9, 10, 11, 12].

Let $\mathcal{H}_{\mathbf{d}}$ be the complex vector space of all systems of n homogeneous polynomial equations of degree \mathbf{d} in n+1 variables. The notation $\mathbb{P}(\mathcal{H}_{\mathbf{d}})$

Date: November 29, 1995.

¹⁹⁹¹ Mathematics Subject Classification. 65H10, 65H20, 68Q25.

Key words and phrases. homotopy, conditioning, gap theorem.

Sponsored by CNPq (Brasil).

Typeset using \mathcal{AMS} -IATEX.

will denote the projectivization of the complex vector space $\mathcal{H}_{\mathbf{d}}$. One may consider a path as a subset of $\mathbb{P}(\mathcal{H}_{\mathbf{d}})$. Its Zariski-closure is always a complex line (provided $f^{(0)} \neq f^{(1)}$). Generically speaking, it meets the discriminant variety $\Sigma \subset \mathbb{P}(\mathcal{H}_{\mathbf{d}})$. This is still true if one fixes one of the systems $f^{(0)}$ and $f^{(1)}$.

We may also represent the path $\{f^{(t)}\}$ by an element $(f^{(0)}, f^{(1)})$ of the space $\mathcal{H} = \mathcal{H}_{\mathbf{d}} \times \mathcal{H}_{\mathbf{d}}$. Once again, it makes sense to look at the Zariski closure of the set of paths meeting the discriminant variety Σ , as subsets of $\mathbb{P}(\mathcal{H}_{\mathbf{d}})$. Clearly, all non-constant paths are in this closure. Therefore, it makes no sense to look for a closed set in \mathcal{H} to generalize Σ' of [6].

However, a generalization is possible if we consider the *real* vector space $\mathbb{R}(\mathcal{H}) = (\operatorname{Re}(\mathcal{H}), \operatorname{Im}(\mathcal{H}))$. This space is endowed with Zariski topology as a real vector space. Indeed, we will prove :

Main Theorem 1. Let n and $\mathbf{d} = (\mathbf{d_1}, \ldots, \mathbf{d_n})$ be fixed. Let \mathcal{H} be the complex vector space of all pairs $(f^{(0)}, f^{(1)})$ of polynomial systems of degree \mathbf{d} . Then there is a non-trivial Zariski closed set Σ'' in $\mathbb{R}(\mathcal{H})$ such that, for all $(f^{(0)}, f^{(1)})$ not in Σ'' and for all $t \in [0, 1]$,

$$\mu(f^{(t)}) \le \mu(\Sigma'') \mathbf{H}\left((\mathbf{f^{(0)}}, \mathbf{f^{(1)}})\right)^{d(\Sigma'')}$$

where the numbers $\mu(\Sigma'')$ and $d(\Sigma'')$ depend only on d, and :

$$\mathbf{H}\left((\mathbf{f}^{(0)}, \mathbf{f}^{(1)})\right) = \max\left(\mathbf{H}\left(\mathbf{f}^{(0)}\right), \mathbf{H}\left(\mathbf{f}^{(1)}\right)\right)$$

Moreover, one can choose $d(\Sigma'') = 2n \prod \mathbf{d_j} \sum \mathbf{d_j}$

We will first construct the set Σ'' containing all the singular paths. Then, using a result in [6], we will bound the 'distance' between a path $\{f^{(t)}\} \notin \Sigma''$ and Σ'' , in terms of $\mathbf{H}\left((\mathbf{f^{(0)}}, \mathbf{f^{(1)}})\right)$. Finally, we will bound the condition number $\mu(\{f^{(t)}\})$ in terms of the inverse of the distance to Σ'' . A suitable distance may be introduced in the 'real projectivization' of $\mathbb{R}(\mathcal{H})$ by :

$$d_{\mathbb{RP}}((f^{(0)}, f^{(1)}), (g^{(0)}, g^{(1)}))^2 = \frac{1}{2} \left(d_{\mathbb{RP}}(f^{(0)}, g^{(0)})^2 + d_{\mathbb{RP}}(f^{(1)}, g^{(1)})^2 \right)$$

On the right hand side, $d_{\mathbb{RP}}(.,.)$ is the projective 2-distance :

$$d_{\mathbb{RP}}(f,g) = \min_{\lambda \in \mathbb{R}_*} \frac{\|f - \lambda g\|_{\mathbf{k}}}{\|f\|_{\mathbf{k}}}$$

This distance can also be interpreted as the sine of the (real) angle between f and g. The norm $\|.\|_k$ denotes the SU(n+1) invariant norm in \mathcal{H}_d (See [2, 8]).

This is similar to the usual projective distance :

$$d_{\mathbb{P}}(f,g) = \min_{\lambda \in \mathbb{C}_*} \frac{\|f - \lambda g\|_{\mathbf{k}}}{\|f\|_{\mathbf{k}}}$$

Clearly, $d_{\mathbb{P}}(f,g) \leq d_{\mathbb{RP}}(f,g)$.

2. Breaking the algebraic structure

In order to construct the set Σ'' , we will need somehow to 'break' the algebraic structure of the problem. The crucial step for this is the following, elementary fact :

Lemma 1. Let $g \in \mathbb{C}[x]$. Let R denote the resultant of two degree deg g polynomials. Then g has a real factor of degree ≥ 1 if and only if $R(g, \overline{g}) = 0$.

Proof. Suppose g has a real factor r. Then r has a real zero ζ , or a pair of conjugate zeros ζ and $\overline{\zeta}$. In both cases, ζ is a common zero of g and \overline{g} . Therefore the resultant $R(g,\overline{g})$ vanishes.

Conversely, suppose that $R(\underline{g}, \overline{g}) = 0$. Then g and \overline{g} have a common zero ζ . Furthermore, $g(\overline{\zeta}) = \overline{g}(\zeta) = 0$, so $\overline{\zeta}$ is a zero of g, and the polynomial $(x - \zeta)(x - \overline{\zeta}) = x^2 - 2x \operatorname{Re}(\zeta) + |\zeta|^2$ divides g. \Box

We may now construct the polynomial $h(t) = R(f^{(t)} \det D' f^{(t)})$ where D' denotes the derivative with respect to x_1, \ldots, x_n , and where R denotes Macaulay's resultant [1, 3] of n + 1 homogeneous polynomials in n+1 variables. R is a polynomial of degree $(\prod_{j \neq i} \mathbf{d}_j)(\sum \mathbf{d}_j - \mathbf{n}) + \prod_j \mathbf{d}_j$ in each set of 'variables' $f_j^{(t)}$. As a polynomial in t, it has degree bounded by $n \prod \mathbf{d}_j \sum \mathbf{d}_j$.

Vanishing of the resultant is a necessary and sufficient condition for $f^{(t)}$ and det $D'f^{(t)}$ to have a common root in \mathbb{P}^{\ltimes} . This common root may be a degenerate root of $f^{(t)}$ or a root of $f^{(t)}$ at 'infinity' $x_0 = 0$. Indeed, if $f^{(t)}(x) = 0$ and $D'f^{(t)}(x)$ is not surjective, we obtain :

$$0 = Df^{(t)}(x) \cdot x = x_0 \frac{\partial f^{(t)}}{\partial x_0} + D' f^{(t)}(x) \cdot \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$

However, if $Df^{(t)}(x)$ is surjective, the columns of $D'f^{(t)}(x)$ cannot spawn $\frac{\partial f^{(t)}}{\partial x_0}$, hence $x_0 = 0$.

Clearly, if $f_t \in \Sigma$ for some real t, then h has a real factor. We now define the mapping :

$$\begin{array}{rccc} p: & \mathcal{H} & \to & \mathbb{C} \\ & (f^{(0)}, f^{(1)}) & \mapsto & R(h, \bar{h}) \end{array}$$

GREGORIO MALAJOVICH

The mapping p defines a polynomial from $\mathbb{R}(\mathcal{H})$ into $\mathbb{R}^{\not\models}$. If some $f^{(t)} \in \Sigma$, then $p(f^{(0)}, f^{(1)})$ vanishes. Let $\Sigma'' = Z(p)$.

Lemma 2. The set Σ'' is a non-trivial closed set.

We mean that p does not vanish uniformly on $\mathbb{R}(\mathcal{H})$.

Proof. Let $(f^{(0)}, f^{(1)})$ be generic, in the following sense : We require $f^{(0)}$ and $f^{(1)}$ to be non-degenerate, and to have no root at 'infinity' $x_0 = 0$. We also want $f^{(0)}$ and $f^{(1)}$ not collinear.

We will prove that for a 'generic' complex number λ (in a sense we will precise later), the path $(f^{(0)}, \lambda f^{(1)})$ is not in Σ'' . Compare with Theorem 1 in [7].

Indeed, let $h^{\lambda}(t) = R(f^{(t)}, \det D'f^{(t)})$ where $f^{(t)} = (1-t)f^{(0)} + t\lambda f^{(1)}$. The polynomial h^{λ} does not vanish uniformly in t, since $f^{(0)}$ has no degenerate solution, and no solution at infinity. Let D be the (maximal) degree of h^{λ} , as a polynomial in t.

Let t_1, \ldots, t_D be the roots of h^1 . We will see that a 'generic' choice of λ will put t_1, \ldots, t_D in position s_1, \ldots, s_D such that $s_i \neq \bar{s}_j$ for all i, j, possibly i = j. Therefore, h^{λ} has no real factor in general, and $(f^{(0)}, \lambda f^{(1)})$ is not in Σ'' .

Indeed, for almost all λ , we may choose s_i such that :

$$(1 - t_i)f^{(0)} + t_i f^{(1)} = c_i \left((1 - s_i)f^{(0)} + s_i \lambda f^{(1)} \right)$$

where c_i is some complex number. If we do that, $h^{\lambda}(s_i) = h(t_i)c_i^{\ D} = 0$. We have to solve :

$$c_i = \frac{1 - s_i}{1 - t_i} = \frac{\lambda s_i}{t_i}$$

Recall that the genericity hypothesis in $(f^{(0)}, f^{(1)})$ prevents $t_i = 0$ or $t_i = 1$. We obtain :

$$s_i\lambda - s_i\lambda t_i = t_i - s_i t_i$$

Solutions are :

$$s_i = \frac{t_i}{\lambda - \lambda t_i + t_i}$$

Those s_i are finite for all $\lambda \neq \frac{-t_i}{1-t_i}$, all *i*. We still need to prove that for 'generic' λ , there are no i, j (possibly i = j) such that $s_i = \bar{s}_j$, or again : $\text{Im}(s_i^{-1} + s_j^{-1}) = 0$. (Recall that $s_i \neq 0$).

The situation to avoid is :

$$\operatorname{Im}\left(\frac{\lambda - \lambda t_i + t_i}{t_i} + \frac{\lambda - \lambda t_j + t_j}{t_j}\right) = 0$$

4

This is :

$$\operatorname{Im}\left(\frac{t_j - 2t_i t_j + t_i}{t_i t_j}\lambda + 2\right) = 0$$

Therefore, it suffices that λ avoids a finite set of points and real lines in complex plane.

3. End of the proof

We are now under the hypotheses of Theorem 1 in [6]:

Theorem 1. Let p be a multi-homogeneous polynomial of degree r_1, \ldots, r_n in sets of variables $f_1 \in \mathbb{C}^{m_1}, \ldots, f_n \in \mathbb{C}^{m_n}$, with integer coefficients. Assume also that groups of variables f_i range over Gaussian integers. Then either p(f) = 0, or :

$$d_{\mathbb{P}}(f, Z(p)) \ge \frac{1}{\frac{\pi}{2} \max \sqrt{m_i} \sum r_i \mathbf{B}(\mathbf{p})} \left(\frac{1}{\mathbf{H}(\mathbf{f})}\right)^{\sum r_i}$$

where Z(p) is the zero-set of p and d is the complex projective 2distance.

Here, the number $\mathbf{B}(\mathbf{p})$ depends only on p. We set $d(\Sigma'') = \sum r_i \leq 2n(\prod \mathbf{d_j})(\sum \mathbf{d_j} - \mathbf{n})$. We define $\mu(\Sigma'')$ as $\frac{\pi}{2} \max \sqrt{m_i} \sum r_i \mathbf{B}(\mathbf{p})$. Then, using $d_{\mathbb{RP}} \leq d_{\mathbb{RP}}$, we obtain a weaker version of the Main Theorem :

Theorem 2. Let n and $\mathbf{d} = (\mathbf{d}_1, \ldots, \mathbf{d}_n)$ be fixed. Let \mathcal{H} be the space of all pairs $(f^{(0)}, f^{(1)})$ of polynomial systems of degree \mathbf{d} . Then there is a non-trivial Zariski closed set Σ'' in $\mathbb{R}(\mathcal{H})$ such that, for all $(f^{(0)}, f^{(1)})$ not in Σ'' and for all $t \in [0, 1]$,

$$\frac{1}{d_{\mathbb{RP}}((f^{(0)}, f^{(1)}), \Sigma'')} \le \mu(\Sigma'') \mathbf{H}\left((\mathbf{f^{(0)}}, \mathbf{f^{(1)}})\right)^{d(\Sigma'')}$$

where the numbers $\mu(\Sigma'')$ and (Σ'') depend only on d, and :

$$\mathbf{H}\left((\mathbf{f^{(0)}}, \mathbf{f^{(1)}})\right) = \max(\mathbf{H}\left(\mathbf{f^{(0)}}\right), \mathbf{H}\left(\mathbf{f^{(1)}}\right))$$

In order to conclude the proof of the Main Theorem, we will need the

Lemma 3.

$$\max_{t \in [0,1]} \mu(f^{(t)}) \le \frac{1}{d_{\mathbb{RP}}((f^{(0)}, f^{(1)}), \Sigma'')}$$

Since μ is real-scaling invariant, we may assume without loss of generality that $\|f^{(t)}\|_{k} = 1$ always.

It was proven in [8] that for a given system f,

$$\mu(f) \leq \frac{1}{d_{\mathbb{P}}(f, \Sigma)}$$

The condition number of a homotopy path was defined by :

$$\mu(\{f^{(t)}\}) = \max_{t \in [0,1]} \mu(f^{(t)})$$

Hence :

$$\mu(\{f^{(t)}\}) \le \max_{\substack{t \in [0,1]\\g \in \Sigma}} \frac{1}{d_{\mathbb{P}}(f^{(t)},g)} = \frac{1}{\min_{\substack{t \in [0,1]\\g \in \mathbb{R}(\Sigma)}} d_{\mathbb{P}}(f^{(t)},g)}$$

Suppose that this minimum was attained at some $t \in [0,1]$ and some $g \in \Sigma$:

$$d_{\mathbb{P}}(f^{(t)},g) = \frac{\min_{\lambda \in \mathbb{C}_*} \left\| f^{(t)} - \lambda g \right\|_{\mathbf{k}}}{\| f^{(t)} \|_{\mathbf{k}}}$$

Since λg also belongs to Σ , we may scale g by λ so that :

$$d_{\mathbb{P}}(f^{(t)},g) = \frac{\left\|f^{(t)} - g\right\|_{\mathbf{k}}}{\left\|f^{(t)}\right\|_{\mathbf{k}}} = d_{\mathbb{RP}}(f^{(t)},g)$$

This shows that :

$$\mu(\{f^{(t)}\}) \le \frac{1}{d_{\mathbb{RP}}(f^{(t)},g)}$$

We may now define a new homotopy path $g^{(s)}$ that is, in some sense, the translation of $f^{(t)}$:

$$g^{(s)} = f^{(s)} + (g - f^{(t)})$$

With that definition :

$$\begin{split} d_{\mathbb{RP}}(\{(f^{(0)}, f^{(1)})\}, \{(g^{(0)}, g^{(1)})\})^2 &= \frac{1}{2} \left(d_{\mathbb{RP}}(f^{(0)}, g^{(0)})^2 + d_{\mathbb{RP}}(f^{(1)}, g^{(1)})^2 \right) \\ \text{But } d_{\mathbb{RP}}(f^{(0)}, g^{(0)}) &\leq \frac{\left\|g^{-f^{(t)}}\right\|_k}{\left\|f^{(0)}\right\|_k} = \left\|g - f^{(t)}\right\|_k, \text{ and similarly for } d_{\mathbb{RP}}(f^{(0)}, g^{(0)}). \end{split}$$
Therefore :

$$d_{\mathbb{RP}}(\{(f^{(0)}, f^{(1)})\}, \{(g^{(0)}, g^{(1)})\})^2 \le \left\|g - f^{(t)}\right\|_{\mathbf{k}}^2 = d_{\mathbb{RP}}(f^{(t)}, g)^2$$

Therefore,

$$\mu(\{f^{(t)}\}) \le \frac{1}{d_{\mathbb{RP}}(f^{(t)},g)} \le \frac{1}{d_{\mathbb{RP}}((f^{(0)},f^{(1)}),(g^{(0)},g^{(1)}))}$$

Moreover, since $(g^{(0)}, g^{(1)}) \in \Sigma''$,

 $d_{\mathbb{RP}}((f^{(0)}, f^{(1)}), (g^{(0)}, g^{(1)})) \ge d_{\mathbb{RP}}((f^{(0)}, f^{(1)}), \Sigma'')$

 $\mathbf{6}$

Thus, we obtained :

$$\mu(\{f^{(t)}\}) \le \frac{1}{d_{\mathbb{RP}}((f^{(0)}, f^{(1)}), \Sigma'')}$$

This proves the Lemma, and hence the Main Theorem.

References

- John Canny, The complexity of robot motion planning, MIT Press, Cambridge, Mass., 1988.
- [2] Eric Kostlan, Random polynomials and the statistical fundamental theorem of algebra, Preprint, Univ. of Hawaii, 1987.
- [3] F. S. Macaulay, Some formulæ in elimination, Proceedings of the London Mathematical Society, Vol XXXV, 1903.
- [4] Gregorio Malajovich On the complexity of path-following Newton algorithms for solving systems of polynomial equations with integer coefficients. PhD Thesis, Berkeley, 1993. United Microfilms Inc, 300 North Zeeb Road, Ann Arbor, MI, 48106-1346 USA, Phone 800-521-0600.
- [5] Gregorio Malajovich On generalized Newton algorithms : quadratic convergence, path-following and error analysis. *Theoretical Computer Science* 133 65-84, 1994.
- [6] Gregorio Malajovich Worst possible condition number of polynomial systems. Preprint, Rio de Janeiro, 1995.
- [7] Alexander Morgan and Andrew Sommese, Computing all solutions to polynomial systems using homotopy continuation. Applied Mathematics and Computation 24, 115-138, 1987.
- [8] Michael Shub and Steve Smale, On the Complexity of Bezout's Theorem I -Geometric aspects. Journal of the AMS, 6, 2, Apr 1993.
- [9] Michael Shub and Steve Smale, On the complexity of Bezout's Theorem II -Volumes and Probabilities. in: F. Eysette and A. Galligo, eds : Computational Algebraic geometry. Progress in Mathematics 109, Birkhauser, 267-285, 1993.
- [10] Michael Shub and Steve Smale, Complexity of Bezout's Theorem III; Condition number and packing. *Journal of Complexity* 9, 4-14, 1993.
- [11] Michael Shub and Steve Smale, Complexity of Bezout's Theorem IV; Probability of success; Extensions Preprint, Berkeley, 1993.
- [12] Michael Shub and Steve Smale, Complexity of Bezout's Theorem V : Polynomial time ; Preprint, Barcelona, 1993.

DEPARTAMENTO DE MATEMATICA APLICADA DA UFRJ, CAIXA POSTAL 68530, CEP 21945, Rio, RJ, Brasil

E-mail address: gregorio@lyric.labma.ufrj.br